Academia.eduAcademia.edu

Outline

Quantum adiabatic computation and the travelling salesman problem

2006, Arxiv preprint quant-ph/0601151

Abstract

The NP-complete problem of the travelling salesman (TSP) is considered in the framework of quantum adiabatic computation (QAC). We first derive a remarkable lower bound for the computation time for adiabatic algorithms in general as a function of the energy involved in the computation. Energy, and not just time and space, must thus be considered in the evaluation of algorithm complexity, in perfect accordance with the understanding that all computation is physical. We then propose, with oracular Hamiltonians, new quantum adiabatic algorithms of which not only the lower bound in time but also the energy requirement do not increase exponentially in the size of the input. Such an improvement in both time and energy complexity, as compared to all other existing algorithms for TSP, is apparently due to quantum entanglement. We also appeal to the general theory of Diophantine equations in a speculation on physical implementation of those oracular Hamiltonians.

References (26)

  1. Vladimir Cerny. Quantum computers and intractable (NP-complete) computing problems. Phys. Rev., A 48:116-119, 1993.
  2. Daniel S. Abrams and Seth Lloyd. Nonlinear quantum mechanics implies polynomial-time solution for NP-complete and P problems. Phys.Rev.Lett., 81:3992-3995, 1998.
  3. E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser. Quantum computation by adiabatic evolution. ArXiv:quant-ph/0001106, 2000.
  4. Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A numerical study of the performance of a quantum adiabatic evolution algorithm for satisfiability. arXiv:quant-ph/0007071, 2000.
  5. Edward Farhi, Jeffrey Goldstone, Sam Gutmann, Joshua Lapan, Andrew Lundgren, and Daniel Preda. A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science, 292:472-475, 2001. arXiv:quant-ph/0104129.
  6. Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. Quantum adiabatic evolution algorithms with different paths. arxiv:quant-ph/0208135, 2002.
  7. Marko Znidaric and Martin Horvat. Exponential complexity of an adiabatic algorithm for an NP- complete problem. arXiv:quant-ph/0509162, 2005.
  8. David R. Mitchell, Christoph Adami, Waynn Lue, and Colin P. Williams. A random matrix model of adiabatic quantum computing. Phys. Rev. A, 71:052324, 2005. arXiv:quant-ph/0409088.
  9. Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Daniel Nagaj. How to make the quantum adiabatic algorithm fail. arXiv:quant-ph/0512159, 2005.
  10. Marko Znidaric. Eigenlevel statistics of the quantum adiabatic algorithm. Phys. Rev. A, 72:052336, 2005. arXiv:quant-ph/0512018.
  11. L.K. Grover. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett., 79:325-328, 1997.
  12. Jeremie Roland and Nicolas J. Cerf. Quantum search by local adiabatic evolution. Phys. Rev., A 65:042308, 2002.
  13. Recep Eryigit, Yigit Gunduc, and Resul Eryigit. Local adiabatic quantum search with different paths. arXiv:quant-ph/0309201, 2003.
  14. Saurya Das, Randy Kobes, and Gabor Kunstatter. Energy and efficiency of adiabatic quantum search algorithms. J. Phys. A: Math. Gen., 36:1-7, 2003.
  15. Zhaohui Wei and Mingsheng Ying. Quantum search algorithm by adiabatic evolution under a priori probability. arXiv:quant-ph/0412117, 2004.
  16. H.R. Lewis and C.H. Papadimitriou. Elements of the Theory of Computation. Prentice Hall, New Jersey, 1981.
  17. Christos H. Papadimitriou. The Euclidean travelling salesman problem is NP-complete. Theoretical Computer Science, 4:237-244, 1977.
  18. T.D. Kieu. Computing the non-computable. Contemporary Physics, 44:51-77, 2003.
  19. T.D. Kieu. Quantum algorithms for Hilbert's tenth problem. Int. J. Theor. Phys., 42:1451-1468, 2003.
  20. T.D. Kieu. A reformulation of Hilbert's tenth problem through quantum mechanics. Proc. Roy. Soc., A 460:1535-1545, 2004.
  21. T.D. Kieu. Numerical simulations of a quantum algorithm for Hilbert's tenth problem. In Eric Donkor, Andrew R. Pirich, and Howard E. Brandt, editors, Proceedings of SPIE Vol. 5105 Quantum Information and Computation, pages 89-95. SPIE, Bellingham, WA, 2003.
  22. T.D. Kieu. Quantum adiabatic algorithm for Hilbert's tenth problem: I. The algorithm. ArXiv:quant-ph/0310052, 2003.
  23. Yuri V. Matiyasevich. Hilbert's Tenth Problem. MIT Press, Cambridge, Massachussetts, 1993.
  24. Gregory Chaitin. Meta Math! : The Quest for Omega. Pantheon, New York, 2005.
  25. A. Boulatov and V.N. Smelyanskiy. Quantum adiabatic algorithm and large spin tunnelling. Phys. Rev. A, 71:052309, 2005. arXiv:quant-ph/0309150.
  26. Similar results can also be derived for a generalised QAC [6, 15, 25], where an extra term of the form h(t)HE (with h(0) = h(T ) = 0) is added to (1) to represent some further freedom in the adiabatic paths.