Academia.eduAcademia.edu

Outline

Is a general -matrix?

2012, Linear Algebra and its Applications

https://doi.org/10.1016/J.LAA.2011.03.009

Abstract

H−matrices play an important role in the theory and applications of Numerical Linear Algebra. So, it is very useful to know whether a given matrix A ∈ C n,n , usually the coefficient of a complex linear system of algebraic equations or of a Linear Complementarity Problem (A ∈ R n,n , with a ii > 0 for i = 1, 2,. .. , n in this case), is an H−matrix; then, most of the classical iterative methods for the solution of the problem at hand converge. In recent years the set of H−matrices has been extended to what is now known as the set of General H−matrices, and a partition of this set in three different classes has been made. The main objective of this work is to develop an algorithm that will determine the H−matrix character and will identify the class to which a given matrix A ∈ C n,n belongs; in addition, some results on the classes of general H−matrices and a partition of the non-H−matrix set are presented.

References (23)

  1. FOR i = 1 to n i : S i = j b ij 5. m = min S i , M = max S i
  2. IF m > 1 : r = m > 1 (F ∈ n H 0 ) END
  3. ELSE IF M < 1 : r = M < 1 (F ∈ H I ) END
  4. ELSE IF m = M ( = 1 ) : r = 1 (F ∈ H M ) END
  5. ELSE : D = diag(1 + S i )/(1 + M ), J = D -1 JD, k = k + 1
  6. IF k > maxiter : STOP (Print m and M for the user to decide whether to increase maxiter or use a tolerance (TOL) (see end of this Section))
  7. B.H. Ahn. Solution of Nonsymmetric Linear Complementarity Problems by Iterative Methods. J. Optim. Theory Appl., 33 (1981), 175-185.
  8. M. Alanelli and A. Hadjidimos. A new iterative criterion for H-matrices. SIAM J. Matrix Anal. Appl. 29 (2006), 160-176.
  9. M. Alanelli and A. Hadjidimos. A new iterative criterion for H-matrices: The reducible case. Linear Algebra Appl. 428 (2008), 2761-2777.
  10. A. Berman and R. J. Plemmons. Nonnegative Matrices in the Mathematical Sciences. Classics in Applied Mathematics. SIAM, Philadelphia, 1994.
  11. R. Bru, C. Corral, I. Giménez and J. Mas. Classes of general H-matrices. Linear Algebra Appl. 429 (2008), 2358-2366.
  12. R. Bru, C. Corral, I. Giménez and J. Mas. Schur complement of general H-matrices. Numer. Linear Algebra Appl. 16 (2009), 935-947.
  13. A. Hadjidimos. An Extended Compact Profile Iterative Method Criterion for Sparce H-Matrices. Linear Algebra Appl. 389 (2004), 329-345.
  14. R. A. Horn and C. R. Johnson. Topics in Matrix Analysis. Cambridge University Press, Cambridge, England, 1991.
  15. D. R. Kincaid, J. R. Respess, D. M. Young and R. G. Grimes. ITPACK 2C: A Fortran Package for Solving Large Sparse Linear Systems by Adaptive Accelerated Iterative Methods. ACM Trans. Math. Software, 8 (1982), 302-322.
  16. B. Li, L. Li, M. Harada, H. Niki and M.J. Tsatsomeros. An Iterative Criterion for H-Matrices. Linear Algebra Appl., 271 (1998), 179-190.
  17. L. Li. On the Iterative Criterion for Generalized Diagonally Dominant Matrices. SIAM J. Matrix Anal. Appl., 24 (2002), 17-24.
  18. A. M. Ostrowski. Über die Determinanten mit Überwiegender Hauptdiagonale. Comment. Math. Helv., 10 (1937), 69-96.
  19. H. Schneider. The Elementary Divisors, Associated with 0, of a Singular M -matrix. Proc. Edinburgh Math. Soc., 10 (1956), 108-122.
  20. R. S. Varga. Matrix Iterative Analysis. Second revised and expanded edition, Springer-Verlag, Berlin, 2000.
  21. R. S. Varga. On recurring theorems on diagonal dominance. Linear Algebra Appl. 13 (1976), 1-9.
  22. R. S. Varga. Geršgorin and His Circles. Springer-Verlag, Berlin, 2007.
  23. R. S. Varga. (Personal communication).