A Schur complement approach to a general extrapolation algorithm
2003, Linear Algebra and its Applications
https://doi.org/10.1016/S0024-3795(02)00686-9Abstract
This paper is devoted to a Schur complement approach to the E-transformation which is the most general scalar sequence transformation known so far for accelerating the convergence. A new derivation of known results on Schur complements is given in the first part of the paper. Then, Schur complements and their properties are used to obtain various interpretations of the E-transformation. The recursive rules of the E-algorithm for its implementation are also recovered. New results on its kernel are derived and issues on its convergence are discussed. This approach can be extended to the vector case, thus leading to new vector sequence transformations.
References (56)
- A.C. Aitken, Determinants and Matrices, 6th ed., Oliver and Boyd, Edinburgh and London, 1949.
- M.D. Benchiboun, Étude de Certaines Généralisations du 2 d'Aitken et Comparaison de Procédés d'Accélération de la Convergence, Thèse de 3ième Cycle, Université des Sciences et Techniques de Lille, 1987.
- C. Brezinski, Résultats sur les procédés de sommation et l'ε-algorithme, R.I.R.O., 4ième année R-3 (1970) 147-153.
- C. Brezinski, Généralisation de la transformation de Shanks, de la table de Padé et de l'ε-algorithme, Calcolo 12 (1975) 317-360.
- C. Brezinski, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1977.
- C. Brezinski, A general extrapolation algorithm, Numer. Math. 35 (1980) 175-187.
- C. Brezinski, Recursive interpolation, extrapolation and projection, J. Comput. Appl. Math. 9 (1983) 369-376.
- C. Brezinski, Some determinantal identities in a vector space, with applications, in: H. Werner, H.J. Bünger (Eds.), Padé Approximation and its Applications, Bad Honnef 1983, Lecture Notes in Mathematics, vol. 1071, Springer-Verlag, Berlin, 1984, pp. 1-11.
- C. Brezinski, Convergence acceleration methods: the past decade, J. Comput. Appl. Math. 12-13 (1985) 19-36.
- C. Brezinski, Other manifestations of the Schur complement, Linear Algebra Appl. 111 (1988) 231- 247.
- C. Brezinski, Quasi-linear extrapolation processes, in: R.P. Agarwal et al. (Eds.), Numerical Mathe- matics, Singapore 1988, ISNM vol. 86, Birkhäuser, Basel, 1988, pp. 61-78.
- C. Brezinski, Bordering methods and progressive forms for sequence transformations, Zastos. Mat. 20 (1990) 435-443.
- C. Brezinski, Algebraic properties of the E-transformation, in: A. Wakulicz (Ed.), Numerical Anal- ysis and Mathematical Modelling, Banach Center Publications, vol. 24, PWN, Warsaw, 1990, pp. 85-90.
- C. Brezinski, Biorthogonality and its Applications of Numerical Analysis, Marcel Dekker, New York, 1992.
- C. Brezinski, Dynamical systems and sequence transformations, J. Phys. A: Math. Gen. 34 (2001) 10659-10669.
- C. Brezinski, A classification of quasi-Newton methods, Numer. Algorithms, in press.
- C. Brezinski, M. Crouzeix, Remarques sur le procédé 2 d'Aitken, C. R. Acad. Sci. Paris A 270 (1970) 896-898.
- C. Brezinski, M. Redivo Zaglia, Extrapolation Methods: Theory and Practice, North-Holland, Am- sterdam, 1991.
- C. Brezinski, M. Redivo Zaglia, A general extrapolation algorithm revisited, Adv. Comput. Math. 2 (1994) 461-477.
- C. Brezinski, M. Redivo Zaglia, New vector sequence transformations, in preparation.
- C. Brezinski, H. Sadok, Vector sequence transformations and fixed point methods, in: C. Taylor et al. (Eds.), Numerical Methods in Laminar and Turbulent Flows, Pineridge Press, Swansea, 1987, pp. 3-11.
- C. Brezinski, A. Salam, Matrix and vector sequence transformations revisited, Proc. Edinb. Math. Soc. 38 (1995) 495-510.
- C. Brezinski, G. Walz, Sequences of transformations and triangular recursion schemes with applica- tions in numerical analysis, J. Comput. Appl. Math. 34 (1991) 361-383.
- R.A. Brualdi, H. Schneider, Determinantal identities: Gauss, Schur, Cauchy, Sylvester, Kronecker, Jacobi, Binet, Laplace, Muir, and Cayley, Linear Algebra Appl. 52/53 (1983) 769-791.
- F. Burns, D. Carlson, E. Haynsworth, T. Markham, Generalized inverse formulas using the Schur complement, SIAM J. Appl. Math. 26 (1974) 254-259.
- R.W. Cottle, Manifestations of the Schur complement, Linear Algebra Appl. 8 (1974) 189-211.
- R.W. Cottle, J.S. Pang, R.E. Stone, The Linear Complementarity Problem, Academic Press, New York, 1992.
- D.E. Crabtree, E.V. Haynsworth, An identity for the Schur complement of a matrix, Proc. Am. Math. Soc. 22 (1969) 364-366.
- M. Fiedler, Special Matrices and their Applications in Numerical Mathematics, Martinus Nijhoff Publishers, Dordrecht, 1986.
- F.R. Gantmacher, The Theory of Matrices, Chelsea Publishing Copany, New York, 1959.
- B. Germain-Bonne, Estimation de la Limite de Suites et Formalisation de Procédés d'Accélération de Convergence, Thèse de Doctorat ès Sciences, Université des Sciences et Techniques de Lille, 1978.
- T.N.E. Greville, On some conjectures of P. Wynn concerning the ε-algorithm, MRC Technical Sum- mary Report no. 877, Mathematics Research Center, The University of Wisconsin, Madison, May 1968.
- A.O. Guelfond, Calcul des Différences Finies, Dunod, Paris, 1963.
- T. Håvie, Generalized Neville type extrapolation schemes, BIT 19 (1979) 204-213.
- K. Jbilou, Méthodes d'Extrapolation et de Projection. Applications aux Suites de Vecteurs, Thèse de 3ième Cycle, Université des Sciences et Technologies de Lille, 1988.
- K. Jbilou, H. Sadok, Some results about vector extrapolation methods and related fixed-point itera- tions, J. Comput. Appl. Math. 36 (1991) 385-398.
- H.B. Keller, The bordering algorithm and path following near singular points of higher nullity, SIAM J. Sci. Stat. Comput. 4 (1983) 573-582.
- V. Lakshmikantham, D. Trigiante, Theory of Difference Equations: Numerical Methods and Appli- cations, Academic Press, San Diego, 1988.
- P.-J. Laurent, Une théorème de convergence pour le procédé d'extrapolation de Richardson, C. R. Acad. Sci. Paris 256 (1963) 1435-1437.
- G. Meinardus, G.D. Taylor, Lower estimates for the error of the best uniform approximation, J. Approx. Theory 16 (1976) 150-161.
- A. Messaoudi, Matrix recursive projection and interpolation algorithms, Linear Algebra Appl. 202 (1994) 71-89.
- A. Messaoudi, Résolution des Systèmes Linéaires par des Méthodes d'Interpolation et d'Extrapola- tion, Thèse d'État ès Sciences, Université Cadi Ayyad, Marrakesh, Morocco, 1996.
- A. Messaoudi, Matrix extrapolation algorithms, Linear Algebra Appl. 256 (1997) 49-73.
- L.M. Milne-Thomson, The Calculus of Finite Differences, Macmillan Press, London, 1933 (reprint by Dover, New York, 1981).
- N.-E. Nörlund, Leçons sur les Équations Linéaires aux Différences Finies, Gauthier-Villars, Paris, 1929.
- A. Ostrowski, A new proof of Haynsworth's quotient formula for Schur complements, Linear Alge- bra Appl. 4 (1971) 389-392.
- D.V. Ouellette, Schur complements and statistics, Linear Algebra Appl. 36 (1981) 187-295.
- A. Quarteroni, A. Valli, Domain Decomposition Methods for Partial Differential Equations, Oxford University Press, Oxford, 1999.
- C. Schneider, Vereinfachte Rekursionen zur Richardson--Extrapolation in Spezialfällen, Numer. Math. 24 (1975) 177-184.
- I. Schur, Potenzreihen im Innern des Einheitskreises, J. Reine Angew. Math. 147 (1917) 205-232.
- D. Shanks, Non linear transformations of divergent and slowly convergent sequences, J. Math. Phys. 34 (1955) 1-42.
- A.W. Tucker, A combinatorial equivalence of matrices, in: R.E. Bellman, M. Hall (Eds.), Proceed- ings of Symposia in Applied Mathematics, vol. 10, American Mathematical Society, Providence, 1960, pp. 129-140.
- J. Wimp, Sequence Transformations and their Applications, Academic Press, New York, 1981.
- J. Wimp, Computation with Recurrence Relations, Pitman, Boston, 1984.
- P. Wynn, On a device for computing the e m (S n ) transformation, MTAC 10 (1956) 91-96.
- F.-Z. Zhang, Matrix Theory: Basic Results and Techniques, Springer-Verlag, New York, 1999.
Claude Brezinski