An algebraic approach for $${\mathcal{H}}$$ -matrix preconditioners
2007, Computing
https://doi.org/10.1007/S00607-007-0224-4Abstract
Hierarchical matrices (H-matrices) approximate matrices in a data-sparse way, and the approximate arithmetic for H-matrices is almost optimal. In this paper we present an algebraic approach for constructing H-matrices which combines multilevel clustering methods with H-matrix arithmetic to compute the H-inverse, H-LU, and the H-Cholesky factors of a matrix. Then the H-inverse, H-LU or H-Cholesky factors can be used as preconditioners in iterative methods to solve systems of linear equations. The numerical results show that this method is efficient and greatly speeds up convergence compared to other approaches, such as JOR or AMG, for solving some large, sparse linear systems, and is comparable to other H-matrix constructions based on Nested Dissection.
References (11)
- B örm, S., Grasedyck, L., Hackbusch, W.: Hierarchical matrices. Technical report, Max-Planck- Institut f ür Mathematik in den Naturwissenschaften, Leipzig, Germany 2003. Lecture Notes No. 21. Available online at www.mis.mpg.de/preprints/ln/
- B örm, S., Grasedyck, L., Hackbusch, W.: Introduction to hierarchical matrices with applications. EABE 27, 403-564 (2003).
- Grasedyck, L., Hackbusch, W.: Construction and arithmetics of H-matrices. Computing 70(4), 295-334 (2003).
- Hackbusch, W.: A sparse matrix arithmetic based on H-matrices. part i: Introduction to H-matrices. Computing 62, 89-108 (1999).
- Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359-392 (1999).
- Le Borne, S., Grasedyck, L.: H-preconditioners in convection-dominated problems. SIAM J. Matrix Anal. Appl. 27(4), 1172-1183, (2006).
- Le Borne, S., Grasedyck, L., Kriemann, R.: Domain-decomposition based H-LU preconditioners. In: Proc. 16th Int. Conf. on Domain Decomposition Methods (New York, 2005). Springer: LNCSE 2006 (forthcoming).
- Leem, K. H., Oliveira, S., Stewart, D.: Algebraic multigrid (AMG) for saddle point systems from meshfree discretizations. Numer. Linear Algebra Appl. 11(3), 293-308 (2004).
- Persson, P., Strang, G.: A simple mesh generator in Matlab. SIAM Rev. 46(2) (2004).
- Stewart, D. E., Leyk, Z.: Meschach: Matrix computations in C. Proc. CMA, vol. 32. The Australian National University 1994.
- S. Oliveira and F. Yang Department of Computer Science University of Iowa 14 McLean Hall Iowa City USA e-mails: {oliveira, fayang}@cs.uiowa.edu