Academia.eduAcademia.edu

Outline

Reconstruction of Fine-Scale Auroral Dynamics

2016, IEEE Transactions on Geoscience and Remote Sensing

Abstract

We present a feasibility study for a high frame rate, short baseline auroral tomographic imaging system useful for estimating parametric variations in the precipitating electron number flux spectrum of dynamic auroral events. Of particular interest are auroral substorms, characterized by spatial variations of order 100 m and temporal variations of order 10 ms. These scales are thought to be produced by dispersive Alfvén waves in the near-Earth magnetosphere. The auroral tomography system characterized in this paper reconstructs the auroral volume emission rate to estimate the characteristic energy and location in the direction perpendicular to the geomagnetic field of peak electron precipitation flux using a distributed network of precisely synchronized ground-based cameras. As the observing baseline decreases, the tomographic inverse problem becomes highly ill-conditioned; as the sampling rate increases, the signal-to-noise ratio degrades and synchronization requirements become increasingly critical. Our approach to these challenges uses a physics-based auroral model to regularize the poorlyobserved vertical dimension. Specifically, the vertical dimension is expanded in a low-dimensional basis consisting of eigenprofiles computed over the range of expected energies in the precipitating electron flux, while the horizontal dimension retains a standard orthogonal pixel basis. Simulation results show typical characteristic energy estimation error less than 30% for a 3 km baseline achievable within the confines of the Poker Flat Research Range, using GPS-synchronized Electron Multiplying CCD cameras with broad-band BG3 optical filters that pass prompt auroral emissions.

References (50)

  1. C. Störmer, "Twenty-five years' work on the polar aurora," Terrestrial Magnetism and Atmospheric Electricity, vol. 35, no. 4, pp. 193-208, 1930.
  2. S. Frey, H. U. Frey, D. J. Carr, O. H. Bauer, and G. Haerendel, "Auroral emission profiles extracted from three-dimensionally reconstructed arcs," Journal of Geophysical Research: Space Physics, vol. 101, no. A10, pp. 21 731-21 741, 1996.
  3. R. A. Doe, J. D. Kelly, J. L. Semeter, and D. P. Steele, "Tomographic reconstruction of 630.0 nm emission structure for a polar cap arc," Geophysical Research Letters, vol. 24, no. 9, pp. 1119-1122, 1997.
  4. B. Gustavsson, "Tomographic inversion for alis noise and resolution," Journal of Geophysical Research: Space Physics, vol. 103, no. A11, pp. 26 621-26 632, 1998.
  5. J. Semeter, M. Mendillo, and J. Baumgardner, "Multispectral tomo- graphic imaging of the midlatitude aurora," Journal of Geophysical Research: Space Physics, vol. 104, no. A11, pp. 24 565-24 585, 1999.
  6. C. C. Chaston, L. M. Peticolas, J. W. Bonnell, C. W. Carlson, R. E. Ergun, J. P. McFadden, and R. J. Strangeway, "Width and brightness of auroral arcs driven by inertial alfven waves," Journal of Geophysical Research: Space Physics, vol. 108, no. A2, 2003.
  7. J. P. McFadden, C. W. Carlson, and R. E. Ergun, "Microstructure of the auroral acceleration region as observed by fast," Journal of Geophysical Research: Space Physics, vol. 104, no. A7, pp. 14 453-14 480, 1999.
  8. J. Semeter, Coherence in Auroral Fine Structure, ser. Geophys. Monogr. Ser. Washington, DC: AGU, 2012, vol. 197, pp. 81-90.
  9. A. Jones, R. Gattinger, F. Creutzberg, F. Harris, A. McNamara, A. Yau, E. Llewellyn, D. Lummerzheim, M. Rees, I. McDade, and J. Margot, "The aries auroral modelling campaign: characterization and modelling of an evening auroral arc observed from a rocket and a ground-based line of meridian scanners," Planetary and Space Science, vol. 39, no. 12, pp. 1677 -1705, 1991.
  10. H. Frey, S. Frey, B. Lanchester, and M. Kosch, "Optical tomography of the aurora and eiscat," Annales Geophysicae, vol. 16, no. 10, pp. 1332-1342, 1998.
  11. J. Semeter, M. Zettergren, M. Diaz, and S. Mende, "Wave dispersion and the discrete aurora: New constraints derived from high-speed imagery," Journal of Geophysical Research: Space Physics, vol. 113, no. A12, 2008.
  12. T. Pedersen, B. Gustavsson, E. Mishin, E. Kendall, T. Mills, H. C. Carlson, and A. L. Snyder, "Creation of artificial ionospheric layers using high-power hf waves," Geophysical Research Letters, vol. 37, no. 2, 2010, l02106.
  13. E. Kendall, R. Marshall, R. T. Parris, A. Bhatt, A. Coster, T. Pedersen, P. Bernhardt, and C. Selcher, "Decameter structure in heater-induced airglow at the high frequency active auroral research program facility," Journal of Geophysical Research: Space Physics, vol. 115, no. A8, 2010, a08306.
  14. J. E. Borovsky, "Auroral arc thicknesses as predicted by various theo- ries," Journal of Geophysical Research: Space Physics, vol. 98, no. A4, pp. 6101-6138, 1993.
  15. J. Maggs and T. Davis, "Measurements of the thicknesses of auroral structures," Planetary and Space Science, vol. 16, no. 2, pp. 205 -209, 1968.
  16. T. S. Trondsen, "High spatial and temporal resolution auroral imaging," Ph.D. dissertation, University of Tromsø, 1998. [Online]. Available: http: //www.keoscientific.com/Documents/Trondsen_Dissertation_1998.pdf
  17. A. Omholt, The Optical Aurora, ser. Physics and Chemistry in Space. Springer-Verlag, 1971.
  18. H. Dahlgren, J. L. Semeter, R. A. Marshall, and M. Zettergren, "The optical manifestation of dispersive field-aligned bursts in auroral breakup arcs," Journal of Geophysical Research: Space Physics, vol. 118, no. 7, pp. 4572-4582, 2013.
  19. M.Hirsch, J.Semeter, M.Zettergren, H.Dahlgren, A.Baurley, C.Goenka, H.Akbari, and D.Hampton, "Multi-camera reconstruction of fine scale high speed auroral dynamics," Dec. 2014, poster SA13B-3991 presen- tated at AGU Fall Meeting.
  20. M. D. Zettergren, "Model-based optical and radar remote sensing of transport and composition in the auroral ionosphere," Ph.D. dissertation, Boston University, 2009. [Online]. Available: http: //search.proquest.com/docview/304847517?accountid=9676
  21. P.-L. Blelly, A. Robineau, D. Lummerzheim, and J. Lilensten, "8-moment fluid models of the terrestrial high latitude ionosphere between 100 and 3000 km," in Handbook of the Aeronomical Models of the Ionosphere, B. Schunk, Ed. CASS, Utah State University, USA: Solar-Terrestrial Environment Program (STEP), 1996. [Online]. Available: http://scostep.apps01.yorku.ca/wp-content/uploads/ 2010/10/ionospheric-models.pdf
  22. S. M. Bailey, C. A. Barth, and S. C. Solomon, "A model of nitric oxide in the lower thermosphere," Journal of Geophysical Research: Space Physics, vol. 107, no. A8, pp. SIA 22-1-SIA 22-12, 2002.
  23. T. Sergienko and V. Ivanov, "A new approach to calculate the excitation of atmospheric gases by auroral electron impact," Annales Geophysicae, vol. 11, no. 8, pp. 717-727, Aug. 1993.
  24. D. J. Strickland, R. R. Meier, J. H. Hecht, and A. B. Christensen, "Deducing composition and incident electron spectra from ground-based auroral optical measurements: Theory and model results," Journal of Geophysical Research: Space Physics, vol. 94, no. A10, pp. 13 527- 13 539, 1989.
  25. D. Lummerzheim and J. Lilensten, "Electron transport and energy degradation in the ionosphere: evaluation of the numerical solution, com- parison with laboratory experiments and auroral observations," Annales Geophysicae, vol. 12, no. 10-11, pp. 1039-1051, 1994.
  26. C. C. Finlay, S. Maus, C. D. Beggan, T. N. Bondar, A. Chambodut, T. A. Chernova, A. Chulliat, V. P. Golovkov, B. Hamilton, M. Hamoudi, R. Holme, G. Hulot, W. Kuang, B. Langlais, V. Lesur, F. J. Lowes, H. Lühr, S. Macmillan, M. Mandea, S. McLean, C. Manoj, M. Men- vielle, I. Michaelis, N. Olsen, J. Rauberg, M. Rother, T. J. Sabaka, A. Tangborn, L. Tøffner-Clausen, E. Thébault, A. W. P. Thomson, I. Wardinski, Z. Wei, and T. I. Zvereva, "International geomagnetic refer- ence field: the eleventh generation," Geophysical Journal International, vol. 183, no. 3, pp. 1216-1230, 2010.
  27. K. Lancaster, "simplekml library," https://code.google.com/p/ simplekml/, 2011-2015.
  28. D. Lang, D. W. Hogg, K. Mierle, M. Blanton, and S. Roweis, "Astrometry.net: Blind astrometric calibration of arbitrary astronomical images," The Astronomical Journal, vol. 139, no. 5, p. 1782, 2010. [Online]. Available: http://stacks.iop.org/1538-3881/139/i=5/a=1782
  29. J. Lilensten and P. Blelly, "The tec and f2 parameters as tracers of the ionosphere and thermosphere," Journal of Atmospheric and Solar- Terrestrial Physics, vol. 64, no. 7, pp. 775 -793, 2002.
  30. M. Zettergren, J. Semeter, P.-L. Blelly, and M. Diaz, "Optical estimation of auroral ion upflow: Theory," Journal of Geophysical Research: Space Physics, vol. 112, no. A12, 2007.
  31. M. Zettergren, J. Semeter, P.-L. Blelly, G. Sivjee, I. Azeem, S. Mende, H. Gleisner, M. Diaz, and O. Witasse, "Optical estimation of auroral ion upflow: 2. a case study," Journal of Geophysical Research: Space Physics, vol. 113, no. A7, 2008.
  32. O. Tange, "Gnu parallel -the command-line power tool," ;login: The USENIX Magazine, vol. 36, no. 1, pp. 42-47, Feb 2011. [Online]. Available: http://www.gnu.org/s/parallel
  33. Y.-M. Tanaka, T. Aso, B. Gustavsson, K. Tanabe, Y. Ogawa, A. Kadokura, H. Miyaoka, T. Sergienko, U. Brändström, and I. San- dahl, "Feasibility study on generalized-aurora computed tomography," Annales Geophysicae, vol. 29, no. 3, pp. 551-562, 2011.
  34. C. Simon Wedlund, H. Lamy, B. Gustavsson, T. Sergienko, and U. Brändström, "Estimating energy spectra of electron precipitation above auroral arcs from ground-based observations with radar and optics," Journal of Geophysical Research: Space Physics, vol. 118, no. 6, pp. 3672-3691, 2013.
  35. L. Peticolas and D. Lummerzheim, "Time-dependent transport of field- aligned bursts of electrons in flickering aurora," Journal of Geophysical Research: Space Physics, vol. 105, no. A6, pp. 12 895-12 906, 2000.
  36. D. W. Swift, "On the formation of auroral arcs and acceleration of auroral electrons," Journal of Geophys. Res., vol. 80, pp. 2096-2108, 1975.
  37. F. Mozer and C. Kletzing, "Direct observation of large, quasi-static, parallel electric fields in the auroral acceleration region," Geophysical Research Letters, vol. 25, pp. 1629-1632, 1998.
  38. R. E. Ergun, L. Andersson, D. S. Main, Y.-J. Su, C. W. Carlson, J. P. McFadden, and F. S. Mozer, "Parallel electric fields in the upward current region of the aurora: Indirect and direct observations," Physics of Plasmas, vol. 9, no. 9, pp. 3685-3694, 2002.
  39. D. J. Strickland, R. E. Daniell, J. R. Jasperse, and B. Basu, "Transport- theoretic model for the electron-proton-hydrogen atom aurora: 2. model results," Journal of Geophysical Research: Space Physics, vol. 98, no. A12, pp. 21 533-21 548, 1993.
  40. A. V. Jones, Aurora. D. Reidel Publishing Co., 1974.
  41. F. Kneizys, E. Shettle, L. Abreu, J. Chetwynd, G. Anderson, W. Gallery, J. Selby, and S. Clough, Users guide to LOWTRAN 7, Air Force Geophysics Laboratory, Hanscom AFB, Mass., 1988. [Online]. Available: http://www.dtic.mil/dtic/tr/fulltext/u2/a206773.pdf
  42. J. Semeter, "Ground-based tomography of atmospheric optical emis- sions," Ph.D. dissertation, Boston University, 1997. [Online]. Available: http://search.proquest.com/docview/304337205?accountid=9676
  43. W. M. Newman and R. F. Sproull, Eds., Principles of Interactive Computer Graphics (2nd Ed.). New York, NY, USA: McGraw-Hill, Inc., 1979.
  44. J. Semeter and M. Mendillo, "A nonlinear optimization technique for ground-based atmospheric emission tomography," Geoscience and Remote Sensing, IEEE Transactions on, vol. 35, no. 5, pp. 1105-1116, Sep 1997.
  45. R. Byrd, P. Lu, J. Nocedal, and C. Zhu, "A limited memory algorithm for bound constrained optimization," SIAM Journal on Scientific Computing, vol. 16, no. 5, pp. 1190-1208, 1995.
  46. C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, "Algorithm 778: L-bfgs- b: Fortran subroutines for large-scale bound-constrained optimization," ACM Trans. Math. Softw., vol. 23, no. 4, pp. 550-560, Dec. 1997.
  47. J. L. Morales and J. Nocedal, "Remark on "algorithm 778: L-bfgs-b: Fortran subroutines for large-scale bound constrained optimization"," ACM Trans. Math. Softw., vol. 38, no. 1, pp. 7:1-7:4, Dec. 2011. [Online]. Available: http://doi.acm.org/10.1145/2049662.2049669
  48. E. Jones, T. Oliphant, P. Peterson et al., "SciPy: Open source scientific tools for Python," 2001-, [Online; accessed 2014-11-06]. [Online]. Available: http://www.scipy.org/
  49. J. More and S. Wright, Optimization Software Guide, ser. Frontiers in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), 1993, no. 14.
  50. A. Savitzky and M. J. E. Golay, "Smoothing and differentiation of data by simplified least squares procedures." Analytical Chemistry, vol. 36, no. 8, pp. 1627-1639, 1964.