Optical tomography of the aurora and EISCAT
1998, Annales Geophysicae
https://doi.org/10.1007/S005850050700Abstract
Tomographic reconstruction of the threedimensional auroral arc emission is used to obtain vertical and horizontal distributions of the optical auroral emission. Under the given experimental conditions with a very limited angular range and a small number of observers, algebraic reconstruction methods generally yield better results than transform techniques. Dierent algebraic reconstruction methods are tested with an auroral arc model and the best results are obtained with an iterative least-square method adapted from emission-computed tomography. The observation geometry used during a campaign in Norway in 1995 is tested with the arc model and root-mean-square errors, to be expected under the given geometrical conditions, are calculated. Although optimum geometry was not used, root-mean-square errors of less than 27 for the images and of the order of 307 for the distribution could be obtained. The method is applied to images from real observations. The correspondence of original pictures and projections of the reconstructed volume is discussed, and emission pro®les along magnetic ®eld lines through the three-dimensionally reconstructed arc are calibrated into electron density pro®les with additional EISCAT measurements. Including a background pro®le and the temporal changes of the electron density due to recombination, good agreement can be obtained between measured pro®les and the time-sequence of calculated pro®les. These pro®les are used to estimate the conductivity distribution in the vicinity of the EISCAT site. While the radar can only probe the ionosphere along the radar beam, the three-dimensional tomography enables conductivity estimates in a large area around the radar site.
References (33)
- Aikio, A. T., and K. U. Kaila, A substorm observed by EISCAT and other ground-based instruments ± evidence for near-earth substorm initiation, J. Atmos. Terr. Phys., 58, 1±4, 1996.
- Aso, T., T. Hashimoto, M. Abe, T. Ono, and M. Ejiri, On the analysis of aurora stereo observations, J. Geomagn. Geoelectr., 42, 579±595, 1990.
- Budinger, T. F., and G. T. Gullberg, Three-dimensional reconstruc- tion in nuclear medicine emission imaging, IEEE Trans. Nucl. Sci., 21, 2±20, 1974.
- Budinger, T. F., G. T. Gullberg, and R. H. Huesman, Emission computed tomography, in Image reconstruction from projections, Ed. G.T. Herman, Springer, New York, pp 147±246, 1979.
- Doe, R. A., J. D. Kelly, J. L. Semeter, and D. P. Steele, Tomo- graphic reconstruction of 630.0-nm emission structure for a polar cap arc, Geophys. Res. Lett., 24, 1119-1122, 1997.
- Foley, J. D. and A. Van Dam, Fundamentals of interactive computer graphics, Addison-Wesley, Reading, Mass., 1982.
- Frey, S., H. U. Frey, D. J. Carr, O. H. Bauer, and G. Haerendel, Auroral emission pro®les extracted from three-dimensional reconstructed arcs, J. Geophys. Res., 101, 21731±21741, 1996a.
- Frey, H. U., S. Frey, O. H. Bauer, and G. Haerendel, Three- dimensional reconstruction of the auroral arc emission from stereoscopic optical observations, SPIE Proc., 2827, 142±149, 1996b.
- Frey, H. U., W. Lieb, O.H. Bauer, H. HoÈ fner, and G. Haerendel, CCD-camera system for stereoscopic optical observations of the aurora, SPIE Proc., 2863, 460±466 , 1996c.
- Gilbert, P., Iterative methods for the three-dimensional recon- struction of an object from projections, J. Theor. Biol., 36, 105± 117, 1972.
- Gordon, R., and G. T. Herman, Three-dimensional reconstruction from projections: a review of algorithms, Int. Rev. Cytol., 38, 111±151, 1974.
- Gustavsson, B., A study of feasible tomographic inversion tech- niques for ALIS, Tech. Rep., 39, Inst. foÈ r Rymdfysik, Kiruna, Sweden, 1992.
- Hedin, A. E., Extension of the MSIS thermosphere model into the middle and lower atmosphere, J. Geophys. Res., 96, 1159-1172, 1991.
- Jakowski, N., E. Sardon, E. Engler, A. Jungstand, and D. KlaÈ hn, Relationship between GPS-signal propagation errors and EISCAT observations, Ann. Geophysicae, 14, 1429±1436, 1996.
- Katsulai, H., and N. Arimizu, An iterative reconstruction from truncated projection data, IEEE Trans. Nucl. Sci., 32, 1217± 1224, 1985.
- Lanchester, B. S., J. R. Palmer, M. H. Rees, D. Lummerzheim, K. Kaila, and T. Turunen, Energy ¯ux and characteristic energy of an elemental auroral structure, Geophys. Res. Lett., 21, 2789± 2792, 1994.
- Lester, M., J. A. Davies, and T. S. Virdi, High-latitude Hall and Pedersen conductances during substorm activity in the SUN- DIAL-ATLAS campaign, J. Geophys. Res., 101, 26719±26728, 1996.
- Markkanen, M., M. Lehtinen, T. Nygre n, J. PirttilaÈ , P. Henelius, E. Vilenius, E. D. Tereshchenko, and B. Z. Khudukon, Bayesian approach to satellite radio tomography with applications in the Scandinavian sector, Ann. Geophysicae, 13, 1277±1287, 1995.
- Natterer, F., The mathematics of computerized tomography, Wiley, New York, 1986.
- Nygre n, T., M. Markkanen, M. Lehtinen, E. D. Tereshchenko, B. Z. Khudukon, O. V. Evsta®ev, and P. Pollari, Comparison of F- region electron density observations by satellite radio tomo- graphy and incoherent-scatter methods, Ann. Geophysicae, 14, 1422±1428, 1996.
- Omholt, A., The optical aurora, Springer, New York, 1971.
- Pakula, W. A., P. F. Fougere, J. A. Klobuchar, J. J. Kuenzler, M. J. Buonsanto, J. M. Roth, J. C. Foster, and R. E. Sheehan, Tomographic reconstruction of the ionosphere over North America with comparison to ground-based radar, Radio Sci., 30, 89±103, 1995.
- Peyrin, F. C., The generalized back projection theorem for cone beam reconstruction, IEEE Trans. Nucl. Sci., 32, 1512±1519, 1985.
- Pryse, S. E., and L. Kersley, A preliminary experimental test of ionospheric tomography, J. Atmos. Terr. Phys., 54, 1007±1012, 1992.
- Ratclie, J. A., An introduction to the ionosphere and magneto- sphere, University Press, Cambridge, 1972.
- Raymund, T. D., Comparison of several ionospheric tomography algorithms, Ann. Geophysicae, 13, 1254±1262, 1995.
- Rees, M. H., Auroral ionisation and excitation by incident energetic electrons, Planet. Space Sci., 11, 1209±1218, 1963.
- RoÈ ttger, J., Incoherent-scatter observations of the auroral iono- sphere with the EISCAT radar facility, in Auroral physics, Eds.
- C.-I. Meng, M. J. Rycroft, and L. A. Frank, University Press, Cambridge, pp. 419±437, 1991.
- b Fig. 8. Calculated height-integrated Hall (left) and Pedersen (right) conductances at 1836:30, 1837:53, 1838:10, and 1838:30 UT. The x- and y-axes correspond to the 60 Â 60 km 2 area of reconstruction and the z-axis shows the conductances in units of S Schlegel, K., Auroral zone E-region conductivities during solar minimum derived from EISCAT data, Ann. Geophysicae, 6, 129±138, 1988.
- Vallance Jones, A., et al., The ARIES auroral modeling campaign: characterization and modeling of an evening auroral arc observed from a rocket and a ground-based line of meridian scanners, Planet. Space Sci., 39, 1677±1705, 1991.
- Verhoeven, D., Limited-data computed tomography algorithms for the physical sciences, Appl. Opt., 32, 3736±3754, 1993.
- Walker, I. K., J. A. T. Heaton, L. Kersley, C. N. Mitchell, S. E. Pryse, and M. J. Williams, EISCAT veri®cation in the devel- opment of ionospheric tomography, Ann. Geophysicae, 14, 1413±1421, 1996.