Academia.eduAcademia.edu

Outline

Monitoring auroral electrojets with satellite data

2013, Space Weather

https://doi.org/10.1002/SWE.20090

Abstract

1] The strong horizontal ionospheric currents in the auroral oval constitute an important space weather parameter. Here we present a method to estimate the latitude location and intensity of these currents from measurements of variations in the magnetic field magnitude made by low Earth polar orbiting satellites. The method is simple enough to be implemented for real-time monitoring, especially since it does not require the full vector field measurement. We demonstrate the method on 5 years of Challenging Minisatellite Payload (CHAMP) data and show how the monitoring depends on the local time of the satellite orbit and how it varies with local time and season in both hemispheres. Statistically, the strongest currents are observed in the predawn and predusk local time quadrants at latitudes that depend on the general magnetic activity level. We also show how the satellite-derived parameters relate to and complement existing ground-based indices. The CHAMP magnetometer in 350-450km altitude easily measures an electrojet which on the ground would produce an Auroral Electrojet (AE)-type signal as small as 20 nT. Thus, while the signal decreases roughly proportionally to the square of the distance to the current, this does not significantly affect the utility of the method for space weather applications even for satellites at substantially higher altitudes. The results for several individual magnetic storm periods demonstrate that large variability can exist in both the latitude and intensity of the currents during the progression of a storm. In the storms analyzed, the latitude of the strongest observed currents are seen to vary between 52 ı and 84 ı magnetic latitude.

References (26)

  1. Ahn, B.-H., H. W. Kroehl, Y. Kamide, and E. A. Kihn (2000), Universal time variations of the auroral electrojet indices, J. Geophys. Res., 105, 267-275.
  2. Ahn, B.-H., G. X. Chen, W. Sun, J. W. Gjerloev, Y. Kamide, J. B. Sigwarth, and L. A. Frank (2005), Equatorward expansion of the westward electrojet during magnetically disturbed periods, J. Geophys. Res., 110, A01305, doi:10.1029/2004JA010553.
  3. Baker, D. N. (1986), Statistical analyses in the study of solar wind- magnetosphere coupling, in Solar Wind-Magnetosphere Coupling, edited by Y. Kamide, and J. A. Slavin, p. 17, Terra Sci., Tokyo.
  4. Davis, T. N., and M. Sugiura (1966), Auroral electrojet activity index AE and its universal time variations, J. Geophys. Res., 71, 785-801.
  5. Feldstein, Y. I. (1997), Auroral electrojets during geomagnetic storms, J. Geophys. Res., 102, 14,223-14,235.
  6. Gjerloev, J. W., R. A. Hoffman, M. M. Friel, L. A. Frank, and J. B. Sigwarth (2004), Substorm behavior of the auroral electrojet indices, Ann. Geophys., 22, 2135-2149.
  7. Gjerloev, J. W., R. A. Hoffman, S. Ohtani, J. Weygand, and R. Barnes (2010), Response of the auroral electrojet indices to abrupt south- ward IMF turnings, Ann. Geophys., 28, 1167-1182.
  8. Juusola, L., K. Kauristie, O. Amm, and P. Ritter (2009), Statistical dependence of auroral ionospheric currents on solar wind and geo- magnetic parameters from 5 years of CHAMP satellite data, Ann. Geophys., 27, 1005-1017.
  9. Kamide, Y., and S.-I. Akasofu (1983), Notes on the auroral electrojet indices, Rev. Geophys. Space Phys., 21, 1647-1656.
  10. Kauristi, K., T. I. Pulkkinen, R. J. Pellinen, and H. J. Opgenoorth (1996), What can we tell about global auroral-electrojet activity from a single meridional magnetometer chain?, Ann. Geophys., 14, 1177-1185.
  11. Lazutin, L. L., and S. N. Kuznetsov (2008), Nature of sudden auroral activations at the beginning of magnetic storms, Geomag. Aeron., 48, 173-182.
  12. Liu, H., and H. Luhr (2005), Strong disturbance of the upper thermo- spheric density due to magnetic storms: CHAMP observations, J. Geophys. Res., 110, A09S29, doi:10.1029/2004JA010908.
  13. Lyons, L. R., D.-Y. Lee, S. Zou, C.-P. Wang, J. U. Kozyra, J. M. Weygand, and S. B. Mende (2008), Dynamic pressure enhancements as a cause of large-scale stormtime substorms, J. Geophys. Res., 113, A08215, doi:10.1029/2007JA012926.
  14. Moretto, T., N. Olsen, P. Ritter, and G. Lu (2002), Investigating the auroral electrojets with low altitude polar orbiting satellites, Ann. Geophys., 20, 1049-1061.
  15. Moretto, T., D. Sibeck, and J. F. Watermann (2004), Occurrence statistics of magnetic impulsive events, Ann. Geophys., 22(2), 585-602.
  16. Newell, P. T., and J. W. Gjerloev (2011), Evaluation of superMAG auro- ral electrojet indices as indicators of substorms and auroral power, J. Geophys. Res., 116, A12211, doi:10.1029/2011JA016779.
  17. Olsen, N. (1996), A new tool for determining ionospheric cur- rents from magnetic satellite data, Geophys. Res. Lett., 23, 3635-3638.
  18. Olsen, N., H. Lühr, T. J. Sabaka, M. Mandea, M. Rother, L. Tøffner- Clausen, and S. Choi (2006), CHAOS -a model of Earth's mag- netic field derived from CHAMP, Ørsted, and SAC-C magnetic satellite data, Geophys. J. Int., 166, 67-75, doi:10.1111/j.1365-246X. 2006.02959.x.
  19. Pirjola, R., K. Kauristi, H. Lappalainen, A. Viljanen, and A. Pulkkinen (2005), Space weather risk, Space Weather, 3, S02A02, doi:10.1029/2004SW000112.
  20. Pulkkinen, A., et al. (2011), Geospace environment modeling 2009-2009 challenge: Ground magnetic field perturbations, Space Weather, 9, S02004, doi:10.1029/2010SW000600.
  21. Reigber, C., H. Luehr, and P. Schwintzer (2002), CHAMP mission status, Adv. Space Res., 30, 129-134.
  22. Rostoker, G. (1972), Geomagnetic indices, Rev. Geophys., 10, 935-950.
  23. Toth, G., L. D. Zeeuw, T. I. Gombosi, W. B. Manchester, A. J. Ridley, I. V. Sokolov, and I. I. Roussev (2007), Sun-to- thermosphere simulation of the 28-30 October 2003 storm with the Space Weather Modeling Framework, Space Weather, 5, S06003, doi:10.1029/2006SW000272.
  24. Tretkoff, E. (2010), Space weather in focus: A decadal review, Space Weather, 8, S10008, doi:10.1029/2010SW000636.
  25. Wang, H., H. Luhr, A. Ridley, P. Ritter, and Y. Yu (2008), Storm time dynamics of auroral electrojets: CHAMP observation and the Space Weather Modeling Framework comparison, Ann. Geophys., 26, 555-570.
  26. Weygand, J. M., and E. Zesta (2008), Comparison of auroral electrojet indices in the Northern and Southern Hemisperes, J. Geophys. Res., 113, A08202, doi:10.1029/2008JA013055.