Academia.eduAcademia.edu

Outline

From Timeless Physical Theory to Timelessness

2010, Humana Mente Journal of Philosophical Studies

Abstract

20 This section is not supposed to be an exhaustive treatment of such issues. It should give the reader a flavor, so to say, of how a fruitful interaction between Physics and Metaphysics might work. For a careful analysis see Calosi (unpublished). 21 I am taking for granted that these debates are genuine metaphysical debates and not just semantic debates in disguise. Those who are inclined to endorse such a semantical skepticism should read my claims counterfactually. 22 The justification for this conjunction is based upon some implicit technical assumptions about reducibility of objects to spacetime regions. It should be noted that the presentism eternalism debate is not to be confused with another classical debate in philosophy of time, namely the debate between A-theory of time and B-theory of time. 23 I am personally inclined to read this claim within the framework of a formal theory of location. Such a theory is a formal theory in the logic sense. It is a set of definitions, axioms and theorems in the language of the first order calculus. See again Calosi (unpublished). 24 In what follows I focus on Presentism. Most of the arguments will apply to Possibilism too so there is no need to distinguish here. 25 As I maintain it is. 26 See the excellent Barons, Evans and Miller (this volume). 27 Most notably Barbour, Pooley and Stein. 32 This claim is allegedly based upon the causal structure of Minkowski Spacetime. 33 Though I know that this might be, again, a controversial claim. 34 For a detailed presentation see Calosi (unpublished). 35 This is due to facts about signature and facts about causal isomorphisms of Minkowski spacetime, i.e., maps of the form : A  A where A is the underlying affine space that preserves the causal structure. Formally if pKq stands for p is causally connectible with q then invariance under causal isomorphism can be written as pKq   (p)K(q). Then the distinction between a 3D and a 4D object can be make precise in locational terms, along those lines. A three-dimensional object is an object that 38 I cannot enter into the details of different formal theories of location. I will therefore stick to the theory that is almost invariably used, as it is found in Gilmore 2007 or Balashov (forthcoming). I have personally some reservations about those theories of location. 39 Notation and definitions are taken from Calosi (unpublished). 40 << stands for the mereological notion of proper parthood. The mereological system presupposed in what follows is Minimal mereology. For those and other mereological details see Varzi (2009). 41 If there is just one such a region than it follows that ExL(x, Path (x)). 42 Index i ranges over spacetime regions. 43 The relativistic counterpart of this notion is achronality. See later on. 44 Where pq is spacelike iff <pq, pq> < 0. 45 Note that Pers (x) is redundant here. This definition of a 3D object can indeed be improved upon, but I cannot refine it here. 46 I cannot enter here into the subtleties about the relationships between Mereological Persistence and Locational Perisistence. * I would like to thank the Japan Society for the Promotion of Science (www.jsps.go.jp) for giving me the means to attend this conference.

References (301)

  1. Allori, V., Dorato, M., Laudisa, F., & Zanghì, N. (2005). La Natura delle cose. Un'introduzione ai fondamenti e alla filosofia della fisica. Roma: Carocci.
  2. Craig, W. L. (2001). Time and the Metaphysics of Relativity. Dordrecht: Kluwer Academic Publishers.
  3. Deutsch, D. (1999). Quantum Theory of Probability and Decisions. Proceedings of the Royal Society of London, A455(1988), 3129- 3137. <http://arxiv.org/abs/quant-ph/9906015>
  4. Dieks, D. (2006). Becoming, Relativity and Locality. In D. Dieks (Ed.), The Ontology of Spacetime (pp. 157-176). Amsterdam: Elsevier.
  5. Dieks, D. (Ed.) (2006). The Ontology of Spacetime. Amsterdam: Elsevier. Humana.Mente -Issue 13 -April 2010
  6. DiSalle, R. (2006). Understanding Spacetime. The Philosophical Development of Physics from Newton to Einstein. Cambridge: Cambridge University Press.
  7. Dolev, Y. (2006). How to Square a Non-Localized Present with Special Relativity. In D. Dieks (Ed.), The Ontology of Spacetime (pp. 177- 190). Amsterdam: Elsevier.
  8. Dorato, M. (2001). Review of William Lane Craig. Time and Metaphysics of Relativity. Republished (2003) in Studies in History and Philosophy of Modern Physics, 34(1), 154-158.
  9. Dorato, M. (2005). The Software of the Universe. Aldershot, UK: Ashgate Publishing.
  10. Dorato, M. (2006a). The Irrelevance of the Presentism/Eternalism Debate for the Ontology of Minkowski Spacetime. In D. Dieks (Ed.), The Ontology of Spacetime (pp. 93-109). Amsterdam: Elsevier.
  11. Dorato, M. (2006b). Absolute Becoming, Relational Becoming and the Arrow of Time: Some Non-Conventional Remarks on the Relationship Between Physics and Metaphysics. Studies in History and Philosophy of Modern Physics, 37(3), 559-576. Reprinted in N. Oaklander (Ed.) (2009), The Philosophy of Time, vol. IV (pp. 254-276). London: Routledge.
  12. Dorato, M. (2008). Is Structural Spacetime Realism Relationism in Disguise? The Supererogatory Nature of the Substantivalism/Relationism Debate. In D. Dieks (Ed.), The Ontology of Spacetime II (pp. 17-37). Amsterdam: Elsevier.
  13. Fine, A. (1989). Do Correlations Need to be Explained?. In J. Cushing & E. McMullin (Eds.), Philosophical Consequences of Quantum Theory (pp. 175-194). Notre Dame, IN: Notre Dame University Press.
  14. Friedman, M. (2001). Dynamics of Reason. Stanford, CA: CSLI Publications.
  15. Frisch, M. (2009). Causality and Dispersion: A Reply to John Norton. The British Journal for the Philosophy of Science, 60(3), 487-495.
  16. Giere, R. (1988). Explaining Science. Chicago: University of Chicago Press. Mauro Dorato -Physics and Metaphysics: Interaction or Autonomy? 11
  17. Hales, S. D., & Johnson, T. (2003). Endurantism, Perdurantism, and Special Relativity. The Philosophical Quarterly, 53(213), 524-539.
  18. Ladyman, J., & Ross, D. (2007). Every Thing Must Go: Metaphysics Naturalized. Oxford: Oxford University Press.
  19. Lange, M. (2002). An Introduction to the Philosophy of Physics. Oxford: Blackwell.
  20. Norton, J. D. (2003). Causation as Folk Science. Philosophers' Imprint, 3(4). <www.philosophersimprint.org/003004/>
  21. Norton, J. D. (2009). Is There an Independent Principle of Causality in Physics?. The British Journal for the Philosophy of Science, 60(3), 475-486.
  22. Psillos, S. (2002). Causation and Explanation. Acumen & McGill-Queens University Press.
  23. Rynasiewicz, R. (1996). Absolute versus Relational Space-time: An Outmoded Debate?. Journal of Philosophy, 43(1), 279-306.
  24. Savitt, S. (2002). On Absolute Becoming and the Myth of Passage. In C. Callender (Ed.), Time, Reality & Experience (pp. 153-167). Cambridge: Cambridge University Press.
  25. Savitt, S. (2006). Presentism and Eternalism in Perspective. In D. Dieks (Ed.), The Ontology of Spacetime (pp. 111-127). Amsterdam: Elsevier.
  26. Sellars, W. (1963). Science, Perception and Reality. London: Routledge and Kegan Paul. Republished (1991) by Ridgeview Publishing Company.
  27. Van Fraassen, B. (1980). The Scientific Image. Oxford: Clarendon Press.
  28. Wallace, D. (2007). Quantum Probability from Subjective Likelihood: Improving on Deutsch's Proof of the Probability Rule. Studies in History and Philosophy of Modern Physics, 38(2), 311-332. REFERENCES
  29. Carnap, R. (1963). Carnap's Intellectual Biography. In P. A. Schilpp (Ed.), The Philosophy of Rudolf Carnap (pp. 1-84). La Salle, IL: Open Court.
  30. Hoffmann, B., & Dukas, H. (1975). Albert Einstein. Frogmore, St Albans, UK: Paladin.
  31. Markosian, N. (2008). Time. In Stanford Encyclopedia of Philosophy. <http://plato.stanford.edu/archives/win2008/entries/time/>
  32. Maudlin, T. (2007). The Metaphysics within Physics. Oxford: Oxford University Press.
  33. Pinna, B. (2009). Pinna Illusion. Scholarpedia, 4(2), 6656. <www.scholarpedia.org/article/Pinna_illusion>
  34. Pinna, B., & Brelstaff, G. J. (2000). A New Visual Illusion of Relative Motion. Vision Research, 49(16), 2091-2096.
  35. Savitt, S. (2008). Being and Becoming in Modern Physics. In Stanford Encyclopedia of Philosophy. <http://plato.stanford.edu/archives/win2008/entries/spacetime- bebecome/>
  36. Williams, D. (1951). The Myth of Passage. The Journal of Philosophy, 48(15), 457-472.
  37. Barbour, J. (1994a). The Timelessness of Quantum Gravity: I. The Evidence from the Classical Theory. Classical Quantum Gravity, 11(12), 2853- 2873.
  38. Barbour, J. (1994b). The Timelessness of Quantum Gravity: II. The Appearance of Dynamics in Static Configurations. Classical Quantum Gravity, 11(12), 2875-2897.
  39. Barbour, J. (1999c). The End of Time. Oxford: Oxford University Press.
  40. Butterfield, J. (2001). The End of Time?. ArXiv General Relativity and Quantum Cosmology e-prints. <http://arxiv.org/abs/gr-qc/0103055v1>
  41. Dainton, B. (2000). Stream of Consciousness: Unity and Continuity in Conscious Experience. London: Routledge.
  42. Healey, R. (2002). Can Physics Coherently Deny the Reality of Time? In C. Callender (Ed.), Time, Reality and Experience (pp. 293-316). Cambridge: Cambridge University Press.
  43. Husserl, E. (1980). On the Phenomenology of the Consciousness of Internal Time. (tr. by J. Brough). Dordrecht: Kluwer Academic Publishers.
  44. Ismael, J. (2002). Rememberances, Mementos, and Time-Capsules. In C. Callender (Ed.), Time, Reality and Experience (pp. 317-328). Cambridge: Cambridge University Press.
  45. Kelly, S. (2005). The Puzzle of Temporal Experience. In A. Brook (Ed.), Cognition and the Brain: The Philosophy and Neuroscience Movement. Cambridge: Cambridge University Press
  46. McTaggart, J. E. (1908). The Unreality of Time. Mind, 17(68), 457-474.
  47. Noe, A. (2006). Experience of the World in Time. Analysis 66(298), 26-32.
  48. Phillips, I. B. (2008). Perceiving Temporal Properties. European Journal of Philosophy, 16(3). Published Online, DOI: 10.1111/j.1468- 0378.2008.00299.x. REFERENCES
  49. Baker, D. (2004). Spacetime Substantivalism and Einstein"s Cosmological Constant. Philosophy of Science, 72(5), 1299-1311.
  50. Bartels, A. (1996). Modern Essentialism and the Problem of Individuation of Spacetime Points. Erkenntnis, 45(1), 25-43.
  51. Bartels, A. (2009). Dispositionen in Raumzeit-Theorien. In C. F. Gethmann (Ed.), Lebenswelt und Wissenschaft. XXI. Deutscher Kongress für Philosophie, Kolloquien. Hamburg: Meiner.
  52. Bird, A. (2007). Nature"s Metaphysics. Laws and Properties. Oxford: Oxford University Press.
  53. Bird, A. (2009). Structural Properties Revisited. In T. Handfield (Ed.), Dispositions and Causes. Oxford: Oxford University Press.
  54. Chakravartty, A. (2005). Causal Realism: Events and Processes. Erkenntnis, 63(1), 7-31.
  55. Chakravartty, A. (2007). A Metaphysics for Scientific Realism: Knowing the Unobservable. Cambridge: Cambridge University Press.
  56. Curiel, E. (2000). The Constraints General Relativity Places on Physicalist Accounts of Causality. Theoria, 15(37), 33-58.
  57. Dowe, P. (2000a). Physical Causation. Cambridge: Cambridge University Press.
  58. Dowe, P. (2000b). The Conserved Quantity Theory Defended. Theoria, 15(37), 11-31.
  59. Earman, J. (1995). Bangs, Crunches, Whimpers, and Shrieks: Singularities and Acausalities in Relativistic Spacetimes. Oxford: Oxford University Press.
  60. Earman, J. (2002). Thoroughly Modern McTaggart: Or, What McTaggart Would Have Said if He Had Read the General Theory of Relativity. Philosophers Imprint, 2(3), 1-28.
  61. Esfeld, M. (2009). The Modal Nature of Structures in Ontic Structural Realism. International Studies in the Philosophy of Science, 23(2), 179-194.
  62. Vincent Lam -Metaphysics of Causation and Physics of General Relativity 79
  63. Esfeld, M, & Lam, V. (2008). Moderate Structural Realism about Space-time. Synthese, 160(1), 27-46.
  64. Fair, D. (1979). Causation and the Flow of Energy. Erkenntnis, 14(3), 219- 250.
  65. French, S. (2006). Structure as a Weapon of the Realist. Proceedings of the Aristotelian Society, 106(1), 170-187.
  66. Hoefer, C. (2000). Energy Conservation in GTR. Studies in History and Philosophy of Modern Physics, 31(2), 187-199.
  67. Jaramillo, J. L., & Gourgoulhon, E. (2010). Mass and Angular Momentum in General Relativity. In L. Blanchet, A. Spallicci & B. Whiting (Eds.), Mass and Motion in General Relativity. Berlin: Springer.
  68. Lam, V. (2009). Métaphysique de la causalité et physique de la relativité générale. Klesis, 13, 106-122.
  69. Lam, V. (2010a). Aspects structuraux de l"espace-temps dans la théorie de la relativité générale. Forthcoming in S. Le Bihan (Ed.), Philosophie de la Physique. Paris: Syllepse.
  70. Lam, V. (2010b). Gravitational and Non-Gravitational Energy: The Need for Background Structures, submitted.
  71. Lewis, D. (1986). Philosophical Papers. Volume 2. Oxford: Oxford University Press.
  72. Livanios, V. (2008). Bird and the Dispositional Essentialist Account of Spatiotemporal Relations. Journal for General Philosophy of Science, 39(2), 383-394.
  73. Maudlin, T. (2007). The Metaphysics within Physics. Oxford: Oxford University Press.
  74. Misner, C. W., Thorne, K. S., & Wheeler, J. A. (1973). Gravitation. San Francisco: W. H. Freeman.
  75. Mumford, S. (1998). Dispositions. Oxford: Oxford University Press.
  76. Norton, J. (1993). General Covariance and the Foundations of General Relativity: Eight Decades of Dispute. Reports on Progress in Physics, 56(7), 791-858.
  77. Psillos, S. (2002). Causation & Explanation. Chesham: Acumen.
  78. Rickles, D. (2006). Time and Structure in Canonical Gravity. In D. Rickles, S. French & J. Saatsi (Eds.), The Structural Foundations of Quantum Gravity (pp. 152-195). Oxford: Oxford University Press.
  79. Rovelli, C. (2004). Quantum Gravity. Cambridge: Cambridge University Press.
  80. Rueger, A. (1998). Local Theories of Causation and the A Posteriori Identification of the Causal Relation. Erenntnis, 48(1), 25-38.
  81. Salmon, W. (1998). Causality and Explanation. Oxford: Oxford University Press.
  82. Salmon, W. (2002). A Realistic Account of Causation. In M. Marsonet (Ed.), The Problem of Realism (pp. 106-134). Aldershot, UK: Ashgate Publishing.
  83. Shoemaker, S. (1980). Causality and Properties. In P. van Inwagen (Ed.), Time and Cause (pp. 109-135). Dordrecht: Reidel.
  84. Wald, R. (1984). General Relativity. Chicago: University of Chicago Press. REFERENCES
  85. Aerts, D. (1999). Quantum Mechanics: Structures, Axioms and Paradoxes. In D. Aerts & J. Pykacz (Eds.), Quantum Structures and the Nature of Reality (pp. 141-197). Dordrecht: Kluwer Academic Publishers.
  86. Alai, M. (2009). Realismo scientifico e realismo metafisico. Giornale di Fisica, L(1), S19-S27.
  87. Albert, D. Z. (1992). Quantum Mechanics and Experience. Cambridge, MA: Harvard University Press.
  88. Garola & Sozzo -Realistic Aspects in the Standard Interpretation of QM 99
  89. Bell, J. S. (1964). On the Einstein-Podolsky-Rosen Paradox. Physics, 1(3), 195-200.
  90. Bell, J. S. (1966). On the Problem of Hidden Variables in Quantum Mechanics. Reviews of Modern Physics, 38(3), 447-452.
  91. Beltrametti, E. G., & Cassinelli, G. (1981). The Logic of Quantum Mechanics. Reading, MA: Addison-Wesley.
  92. Boniolo, G., & Vidali, P. (1999). Filosofia della scienza. Milano: Bruno Mondadori.
  93. Bouwmeester, D., Pan, J.-W., Mattle, K., Eibl, M., Weinfurter, H., & Zeilinger, A. (1997). Experimental Quantum Teleportation. Nature, 390, 575-579.
  94. Braithwaite, R. B. (1953). Scientific Explanation. Cambridge: Cambridge University Press.
  95. Busch, P., Lahti, P. J., & Mittelstaedt, P. (1991). The Quantum Theory of Measurement. Berlin: Springer.
  96. d"Espagnat, B. (1976). Conceptual Foundations of Quantum Mechanics. Reading, MA: Benjamin.
  97. Einstein, A., Podolsky, B., & Rosen, N. (1935). Can Quantum-Mechanical Description of Physical Reality be Considered Complete?. Physical Review, 47, 777-780.
  98. Garola, C. (2000). Objectivity versus Nonobjectivity in Quantum Mechanics. Foundations of Physics, 30(9), 1539-1565.
  99. Garola, C. (2002). A Simple Model for an Objective Interpretation of Quantum Mechanics. Foundations of Physics, 32(10), 1597-1615.
  100. Garola, C. (2003). Embedding Quantum Mechanics into an Objective Framework. Foundations of Physics Letters, 16(6), 605-612.
  101. Garola, C. (2007). The ESR Model: Reinterpreting Quantum Probabilities Within a Realistic and Local Framework. In G. Adenier et al. (Eds.), Quantum Theory: Reconsideration of Foundations -4 (pp. 247-252). Melville, NY: American Institute of Physics.
  102. Garola, C. (2009a). A Proposal for Embodying Quantum Mechanics in a Noncontextual Framework by Reinterpreting Quantum Probabilities. In L. Accardi et al. (Eds.), Foundations of Probability and Physics -5 (pp. 42-50). Melville, NY: American Institute of Physics.
  103. Garola, C. (2009b). An Epistemological Criticism to the Bell-Kochen-Specker Theorem. In L. Accardi et al. (Eds.), Foundations of Probability and Physics -5 (pp. 51-52). Melville, NY: American Institute of Physics.
  104. Garola, C., & Pykacz, J. (2004). Locality and Measurements Within the SR Model for an Objective Interpretation of Quantum Mechanics. Foundations of Physics, 34(3), 449-475.
  105. Garola, C., & Solombrino, L. (1996a). The Theoretical Apparatus of Semantic Realism: A New Language for Classical and Quantum Physics. Foundations of Physics, 26(9), 1121-1164.
  106. Garola, C., & Solombrino, L. (1996b). Semantic Realism Versus EPR-like Paradoxes: The Furry, Bohm-Aharonov, and Bell Paradoxes. Foundations of Physics, 26(10), 1329-1356.
  107. Garola, C., & Sozzo, S. (2007). The Physical Interpretation of Partial Traces: Two Nonstandard Views. Theoretical and Mathematical Physics, 152(2), 1087-1098.
  108. Garola, C., & Sozzo, S. (2009a). The ESR Model: A Proposal for a Noncontextual and Local Hilbert Space Extension of QM. Europhysics Letters, 86(2), 20009-20015.
  109. Garola, C., & Sozzo, S. (2009b). Embedding Quantum Mechanics into an Objective Framework: A Conciliatory Result. International Journal of Theoretical Physics. Published online, DOI 10.1007/s10773-009- 0222-8.
  110. Garola, C., & Sozzo, S. (2010a). Generalized Observables, Bell"s Inequalities and Mixtures in the ESR Model for QM. Foundations of Physics. Published online, DOI 10.1007/s10701-010-9435-1.
  111. Garola, C., & Sozzo, S. (2010b) The Representation of Mixtures in the ESR Model for QM. In A. Y. Khrennikov et al. (Eds.), Quantum Theory: Reconsideration of Foundations -5. Melville, NY: American Institute of Physics. In print.
  112. Garola & Sozzo -Realistic Aspects in the Standard Interpretation of QM 101
  113. Genovese, M. (2005). Research on Hidden Variables Theories: A Review of Recent Progresses. Physics Reports, 413(6), 319-396.
  114. Hempel, C. G. (1965). Aspects of Scientific Explanation. New York: Free Press.
  115. Kochen, S., & Specker, E. P. (1967). The Problem of Hidden Variables in Quantum Mechanics. Journal of Mathematics and Mechanics, 17(1), 59-87.
  116. Laloë, F. (2001). Do We Really Understand Quantum Mechanics? Strange Correlations, Paradoxes, and Theorems. American Journal of Physics, 69(6), 655-701.
  117. Mermin, N. D. (1993). Hidden Variables and the Two Theorems of John Bell. Reviews of Modern Physics, 65(3), 803-815.
  118. Norsen, T. (2007). Against "Realism". Foundations of Physics, 37(3), 311- 340.
  119. Piron, C. (1976). Foundations of Quantum Physics. Reading, MA: Benjamin.
  120. Schlosshauer, M. (2004). Decoherence, the Measurement Problem, and Interpretations of Quantum Mechanics. Reviews of Modern Physics, 76(4), 1267-1305.
  121. Smolin, L. (2005). Why No "New Einstein"?. Physics Today, 58(6), 56-57.
  122. Sozzo, S. (2007). Modified BCHSH Inequalities Within the ESR Model. In G. Adenier et al. (Eds.), Quantum Theory: Reconsideration of Foundations -4 (pp. 334-338). Melville, NY: American Institute of Physics.
  123. Sozzo, S., & Garola, C. (2010). A Hilbert Space Representation of Generalized Observables and Measurement Processes in the ESR Model. International Journal of Theoretical Physics. Published online, DOI 10.1007/s10773-010-0264-y.
  124. Tassani, I. (Ed.) (2004). Quanti Copenhagen? Bohr, Heisenberg e le interpretazioni della meccanica quantistica. Modena: Società Editrice "Il Ponte Vecchio". REFERENCES
  125. Abramowicz, M. A. (2008). Spacetime is not Just Space and Time. New Astronomy Reviews, 51(10), 799-802.
  126. Abramowicz, M. A., Bajtlik, S., Lasota, J.-P., & Moudens, A. (2007). Eppur si Espande. <http://arxiv.org/abs/astro-ph/0612155v3>
  127. Agazzi, E. (2006). Temi filosofici della cosmologia. In Enciclopedia Filosofica, Vol. 3 (pp. 2355-65). Fondazione Centro Studi Filosofici, Milano: Bompiani.
  128. Baker, D. (2005). Spacetime Substantivalism and the Cosmological Constant. <http://philsci-archive.pitt.edu/archive/00001610/>
  129. Barnes, L. A., Francis, M. J., James, J. B., & Lewis, G. F. (2006). Joining the Hubble Flow: Implications for Expanding Space. Monthly Notices of the Royal Astronomical Society, 373(1), 382-390.
  130. Baryshev, Y. (2005). Conceptual Problems of the Standard Cosmological Model. <http://arxiv.org/abs/astro-ph/0509800v1>
  131. Bergia, S. (1997). Problemi fondazionali e metodologici in cosmologia. In G. Boniolo (Ed.), Filosofia della fisica (pp. 169-244). Milano: Bruno Mondadori.
  132. Bunn, E. F., & Hogg, D. W. (2009). The Kinematic Origin of the Cosmological Redshift. <http://arxiv.org/abs/0808.1081v2>
  133. Carlip, S., & Scranton, R. (1999). Remarks on the "New Redshift Interpretation". <http://arxiv.org/abs/astro-ph/9808021v2>
  134. Carrera, M., & Giulini, D. (2006). On the Influence of Global Cosmological Expansion on the Local Dynamics in the Solar System. <http://arxiv.org/abs/gr-qc/0602098v2>
  135. Chodorowski, M. J. (2007). A Direct Consequence of the Expansion of Space?. Monthly Notices of the Royal Astronomical Society, 378(1), 239-244. <http://arxiv.org/abs/astro-ph/0610590v3>
  136. Cook, R., & Burns, M. (2008). Interpretation of the Cosmological Metric. <http://arxiv.org/abs/0803.2701v2>
  137. Cooperstock, F., Faraoni, V., & Vollick, D. (1998). The Influence of the Cosmological Expansion on Local Systems. The Astrophysical Journal, 503(1), 61-66. <http://arxiv.org/abs/astro-ph/9803097v1>
  138. Dainton, B. (2001). Time and Space. Chesham: Acumen.
  139. Davis, T. M. (2004). Fundamental Aspects of the Expansion of the Universe and Cosmic Horizons. Ph.D. Thesis. Sydney: University of New South Wales. <http://arxiv.org/abs/astro-ph/0402278v1>
  140. Davis, T. M., & Lineweaver, C. H. (2003). Expanding Confusion: Common Misconceptions of Cosmological Horizons and the Superluminal Expansion of the Universe. Publications of the Astronomical Society of Australia (2004), 21(1), 97-109. <http://arxiv.org/abs/astro-ph/0310808v2>
  141. Davis, T. M., & Lineweaver, C. H. (2005). Misconceptions About the Big Bang. Scientific American, 292(3), 36-45.
  142. Davis, T. M., Lineweaver, C. H., & Webb, J. K. (2003). Solutions to the Tethered Galaxy Problem in an Expanding Universe and the Observation of Receding Blueshifted Objects. American Journal of Physics, 71(4), 358-364.
  143. DiSalle, R. (1995). Spacetime Theory as Physical Geometry. Erkenntnis, 42(3), 317-337.
  144. Dorato, M. (2006). Absolute Becoming, Relational Becoming and the Arrow of Time: Some Non-Conventional Remarks on the Relationship Between Physics and Metaphysics. Studies in History and Philosophy of Modern Physics, 37(3), 559-576.
  145. Earman, J., & Norton, J. (1987). What Price Space-Time Substantivalism? The Hole Story. The British Journal for the Philosophy of Science, 38, 515-25.
  146. Eddington, A. (1933). The Expanding Universe. New York: The MacMillan Company.
  147. Ehlers, J. (1990). [Discussion].
  148. In B. Bertotti et al. (Eds.), Modern Cosmology in Retrospect (pp. 29-30). Cambridge: Cambridge University Press.
  149. Einstein, A., & Straus, G. (1945). The Influence of the Expansion of Space on the Gravitation Fields Surrounding the Individual Stars. Review of Modern Physics, 17(2-3), 120-124.
  150. Ellis, G. (1978). Is the Universe Expanding?. General Relativity and Gravitation, 9(2), 87-94.
  151. Ellis, G. (2007). Issues in the Philosophy of Cosmology. In J. Butterfield & J. Earman (Eds.), Philosophy of Physics, part B (pp. 1183-1285). Amsterdam: Elsevier.
  152. Ellis, G., & Matravers, D. (1995). General Covariance in General Relativity?. General Relativity and Gravitation, 27(7), 777-788.
  153. Ellis, G., Maartens, R., & Nel, S. (1978). The Expansion of the Universe. Monthly Notices of the Royal Astronomical Society, 184, 439-465.
  154. Fano, V., & Macchia, G. (2008). How Contemporary Cosmology Bypasses Kantian Prohibition Against a Science of the Universe. <http://philsci-archive.pitt.edu/archive/00004413/>
  155. Francis, M. J., Barnes, L. A., James, J. B., & Lewis, G. F. (2007). Expanding Space: The Root of all Evil?. Publications of the Astronomical Society of Australia, 24(2), 95-102. <http://arxiv.org/abs/0707.0380v1>
  156. Grøn, Ø., & Elgarøy, Ø. (2006). Is Space Expanding in the Friedmann Universe Models?. <http://arxiv.org/abs/astro-ph/0603162v2>
  157. Harrison, E. (1993). The Redshift-Distance and Velocity-Distance Laws. Astrophysical Journal, 403(1), 28-31.
  158. Harrison, E. (1995). Mining Energy in an Expanding Universe. Astrophysical Journal, 446(1), 63-66.
  159. Harrison, E. (2000). Cosmology. The Science of the Universe. Cambridge: Cambridge University Press.
  160. Hawley, J., & Holcomb, K. (2005). Foundations of Modern Cosmology. Oxford: Oxford University Press.
  161. Hinckfuss, I. (1975). The Existence of Space and Time. Oxford: Clarendon Press.
  162. Hoefer, C. (1996). The Metaphysics of Space-Time Substantivalism. Journal of Philosophy, 93(1), 5-27.
  163. Hoefer, C. (2000). Energy Conservation in GTR. Studies in History and Philosophy of Modern Physics, 31(2), 187-99.
  164. Infeld, L., & Schild, A. (1945). A New Approach to Kinematic Cosmology. Physical Review, 68(11), 250-72.
  165. Kiang, T. (2003). Time, Distance, Velocity, Redshift: A Personal Guided Tour. <http://arxiv.org/abs/astro-ph/0308010v1>
  166. Melchiorri, B., & Melchiorri, F. (1994). Cosmologia del Big Bang. In G. Russo & E. Verondini (Eds.), Dentro la fisica (pp. 52-72). Bologna: Clueb.
  167. Mellor, H. (1980). On Things and Causes in Spacetime. British Journal for the Philosophy of Science, 31(3), 282-288.
  168. Merleau-Ponty, J. (1965). Cosmologie du XX e siècle. Paris: Gallimard.
  169. Misner, C., Thorne, K., & Wheeler, J. (1973). Gravitation. San Francisco: Freeman.
  170. Morgan, J. (1988). Are Galaxies Receding or Is Space Expanding?. American Journal of Physics, 56(9), 777-8.
  171. Nerlich, G. (1991). How Euclidean Geometry Has Misled Metaphysics. The Journal of Philosophy, 88(4), 169-189.
  172. Nerlich, G. (1994a). What Spacetime Explains. Cambridge: Cambridge University Press.
  173. Nerlich, G. (1994b). The Shape of Space. Cambridge: Cambridge University Press.
  174. Nerlich, G. (2008). Why Spacetime Is Not a Hidden Cause: A Realist Story. <www.spacetimecenter.org/conferences/2008/Nerlich.pdf>
  175. Ohanian, H. (2000). What Space Scales Participate in Cosmic Expansion?. American Journal of Physics, 68(8), 689-690.
  176. Pauri, M. (1991). The Universe as a Scientific Object. In E. Agazzi & A. Cordero (Eds.), Philosophy and the Origin and Evolution of the Universe (pp. 291-339). Dordrecht: Kluwer Academic Publishers.
  177. Peacock, J. A. (1999). Cosmological Physics. Cambridge: Cambridge University Press.
  178. Peacock, J. A. (2006). Cosmological Physics: Additional Topics. <www.roe.ac.uk/~jap/book/expandspace.pdf >
  179. Peacock, J. A. (2008). A Diatribe on Expanding Space. <http://arxiv.org/abs/0809.4573v1>
  180. Peebles, P. J. E. (1993). Principles of Physical Cosmology. Princeton, NJ: Princeton University Press.
  181. Pitts, J. B. (2004). Has Robert Gentry Refuted Big Bang Cosmology? On Energy Conservation and Cosmic Expansion. Perspectives on Science & Christian Faith, 56(4), 260-265.
  182. Prokhovnik, S. J. (1985). Light in Einstein"s Universe. Dordrecht: D. Reidel Publishing Company.
  183. Rindler, W. (2006). Relativity. Special, General, and Cosmological. Oxford: Oxford University Press.
  184. Ross, K. L. (1999). The Ontology and Cosmology of Non-Euclidean Geometry. <www.friesian.com/curved-1.htm>
  185. Rovelli, C. (1997). Halfway Through the Woods: Contemporary Research on Space and Time. In J. Earman & J. Norton (Eds.), The Cosmos of Science (pp. 180-223). Pittsburgh: University of Pittsburgh Press.
  186. Schutz, B. (2003). Gravity From the Ground Up. Cambridge: Cambridge University Press.
  187. Srianand, R., Petitjean, P., & Ledoux, C. (2000). The Cosmic Microwave Background Temperature at a Redshift of 2.33771. Nature, 408(6815), 931-935.
  188. Sumner, W. Q., & Sumner, D. Y. (2007). Coevolution of Quantum Wave Functions and the Friedmann Universe. <http://arxiv.org/abs/0704.2791v1>
  189. Weinberg, S. (2008). Cosmology. Oxford: Oxford University Press.
  190. Whiting, A. B. (2004). The Expansion of Space: Free Particle Motion and the Cosmological Redshift. The Observatory, 124(1180), 174-189. <http://arxiv.org/abs/astro-ph/0404095v1>
  191. Whitrow, G. J. (1980). The Natural Philosophy of Time. Oxford: Clarendon Press. REFERENCES
  192. Brillouin, L. (1938). Les tenseurs en Mécanique et en Elasticité. Paris: Masson.
  193. Born, M. (1978). My Life: Recollections of a Nobel Laureate. London: Taylor & Francis.
  194. Cassidy, D. (1992). Uncertainty. The Life and Science of Werner Heisenberg. New York: Freeman.
  195. Einstein, A. & Infeld, L. (1938). The Evolution of Physics: From Early Concept to Relativity and Quanta. Cambridge: Cambridge University Press.
  196. Fano, G. (1971). Mathematical Methods of Quantum Mechanics. New York: McGraw Hill.
  197. Fano, V. (1999). Meinong e l'interpretazione della legge di Weber. Teorie e modelli, 4, 99-109.
  198. Ghirardi, G. C. (2004). Sneaking a Look at God's Cards. (tr. by G. Malsbary). Princeton, NJ: Princeton University Press. [1997] Angelucci & Fano -Ontology and Mathematics
  199. Hanson, N. (1963). The Concept of the Positron. A Philosophical Analysis. Cambridge: Cambridge University Press.
  200. Heisenberg, W. (1958). Physics and Philosophy. London: Allen and Unwin.
  201. Helmholtz, H. (1887). Zählen und Messen, erkenntnisstheoretisch betrachtet. In Philosophische Aufsätz. Eduard Zeller zu seinem fünzigjährigen Doctor-Jubiläum gewidmet. Leipzig: Fues.
  202. Kant, I. (1996). Critique of Pure Reason. (tr. by W. S. Pluhar). Indianapolis/Cambridge: Hacket Publishing Company. [1787]
  203. Meinong, A. (1896). Über die Bedeutung des Weber'schen Gesetzes. Beiträge zur Psychologie des Vergleichens und des Messens. Zeitschrift für Psychologie und Physiologie der Sinnesorgane, 11, 81-133, 230- 285, 353-404. Also in R. Haller & R. Kindinger (Eds.) (1969-1978), Gesamtausgabe, vol. II, (pp. 215-376). Graz: Akademische Druk-und Verlaganstalt.
  204. Von Neumann, J. (1932). Mathematische Grundlagen der Quantenmechanik. Berlin: Springer.
  205. Von Kries, J. (1882). Über die Messung intensiver Grössen und über das sogenannte psychophysische Gesetz. Vierteljahrsschrift für wissenschaftliche Philosophie, 6, 257-294.
  206. Penrose, R. (2004). The Road to Reality. London: Vintage.
  207. Russell, B. (1903). The Principles of Mathematics. Cambridge: Cambridge the University Press.
  208. Smolin, L. (2006). The Trouble with Physics. The Rise of String Theory, the Fall of a Science and What Comes Next. Orlando, FL: Houghton Mifflin.
  209. Voigt, W. (1898). Die fundamentale physikalische Eigenschaften der Kristalle in elementarer Darstellung. Leipzig: Von Veit.
  210. Whittaker, E. (1951). A History of the Theories of Aether and Electricity. London: Nelson.
  211. Arageorgis, A., Earman, J., & Ruetsche, L. (2002). Fulling Non-Uniqueness and the Unruh Effect: A Primer on Some Aspects of Quantum Field Theory. Philosophy of Science, 70(1), 164-202.
  212. Baker, D. (2009). Against Field Interpretations of Quantum Field Theory. British Journal for the Philosophy of Science, 60(3), 585-609.
  213. Bell, J. S. (1987). Speakable and Unspeakable in Quantum Mechanics. Cambridge: Cambridge University Press.
  214. Clifton, R., & Halvorson, H. (2001). Are Rindler Quanta Real? Inequivalent Particle Concepts in Quantum Field Theory. British Journal for the Philosophy of Science 52(3), 417-470.
  215. Davies, P. (1984). Particles Do Not Exist. In S. Christensen (Ed.), Quantum Theory of Gravity (pp. 66-77). Bristol: Adam Hilger.
  216. Feynman, R., & Weinberg, S. (1987). Elementary Particles and the Law of Physics : The 1986 Dirac Memorial Lectures. Cambridge: Cambridge University Press.
  217. Fraser, D. (2008). The Fate of 'Particles' in Quantum Field Theories with Interactions. Studies in the History and Philosophy of Modern Physics, 39(4), 841-859.
  218. Haag, R. (1996). Local Quantum Physics. Berlin: Springer-Verlag.
  219. Halvorson, H., & Clifton, R. (2002). No Place for Particles in Relativistic Quantum Theories?. Philosophy of Science, 69(1), 1-28.
  220. Halvorson, H., & Mueger, M. (2007). Algebraic Quantum Field Theory. In J. Butterfield & J. Earman (Eds.), Philosophy of Physics (pp. 731-922). Amsterdam: Elsevier.
  221. Huggett, N. (2000). Philosophical Foundations of Quantum Field Theory. British Journal for the Philosophy of Science, 51(4):617-637.
  222. Kuhlmann, M. (2006). Quantum Field Theory. Stanford Encylopedia of Philosophy.<http://plato.stanford.edu/entries/quantum-field-theory/>
  223. Kuhlmann, M., Lyre, H., & Wayne, A. (Eds.) (2002). Ontological Aspects of Quantum Field Theory. River Edge, NJ: World Scientific.
  224. Lupher, T. (2008). The Philosophical Significance of Unitarily Inequivalent Representations in Quantum Field Theory. Ph.D. Dissertation. Austin, TX: University of Texas.
  225. Malament, D. (1996). In Defense of Dogma: Why There Cannot Be a Relativistic Quantum Mechanics of (Localizable) Particles. In R. Clifton (Ed.), Perspectives on Quantum Reality (pp. 1-10). Dordrecht: Kluwer Academic Publishers.
  226. Streater, R., & Wightman, A. (2000). PCT, Spin and Statistics, and All That. Princeton, NJ: Princeton University Press.
  227. Teller, P. (1995). An Interpretive Introduction to Quantum Field Theory. Princeton, NJ: Princeton University Press.
  228. Teller, P. (2002). So What Is the Quantum Field?. In M.Kuhlmann, H. Lyre & A. Wayne (Eds.), Ontological Aspects of Quantum Field Theory (pp. 145-162). River Edge, NJ: World Scientific.
  229. Wald, R. M. (1994). Quantum Field Theory in Curved Spacetime. Chicago: University of Chicago Press.
  230. Wayne, A.(2002). A Naive View of the Quantum Field. In M. Kuhlmann, H. Lyre & A. Wayne (Eds.), Ontological Aspects of Quantum Field Theory (pp. 127-133). River Edge, NJ: World Scientific. REFERENCES
  231. Bíró, T. S., & Ván, P. (2010). About the Temperature of Moving Bodies. Europhysics Letters 89(3), 30001, 1-6.
  232. Ĉapek, M. (1966). Time in Relativity Theory: Arguments for a Philosophy of Becoming. In J. T. Fraser (Ed.), The Voices of Time (pp. 434-454). New York: George Braziller.
  233. Ĉapek, M. (1983). Time-Space rather than Space-Time. Diogenes, 31(123), 30-48.
  234. Carathéodory, C. (1924). Zur Axiomatik der Relativitätstheorie. Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-Mathematische Klasse 5, 12-27.
  235. Chacón-Acosta, G., Dagdug, L., & Morales-Tecotl, H. A. (2009). On the Manifestly Covariant Jüttner Distribution and Equipartition Theorem. <http://arxiv.org/abs/0910.1625>
  236. Connes, A., & Rovelli, C. (1994). Von Neumann Algebra Automorphisms and Time-Thermodynamics Relation in General Covariant Quantum Theories. <http://arxiv.org/abs/gr-qc/9406019>
  237. Cubero, D., Casado-Pascual, J., Dunkel, J., Talkner, P., & Hänggi, P. (2007). Thermal Equilibrium and Statistical Thermometers in Special Relativity. Physical Review Letters 99(17), 17601, 1-4.
  238. Cunningham, E. (1915). Relativity and the Electron Theory. New York: Longmans, Green & Co.
  239. Dunkel, J., & Hänggi, P. (2009). Relativistic Brownian Motion. <http://arxiv.org/abs/0812.1996>
  240. Ehlers, J. (1997). Concepts of Time in Classical Physics. In A. Atmanspacher & E. Ruhnau (Eds.), Time, Temporality, Now (pp. 192-200). Heidenberg: Springer.
  241. Einstein, A. (1907). Über das Relativitätsprinzip und die aus demselben gezogenen Folgerungen. Jahrbuch der Radioaktivität und Elektronik, 4, 411-462.
  242. Einstein, A. (1949). Reply to Criticisms. In P. A. Schilpp (Ed.), Albert Einstein: Philosopher-Scientist, vol. II (pp. 665-688). La Salle, IL: Open Court.
  243. Gödel, K. (1949). A Remark about the Relationship between Relativity Theory and Idealistic Philosophy. In A. Schilpp (Ed.), Albert Einstein: Philosopher-Scientist, vol. II (pp. 557-562). La Salle, IL: Open Court.
  244. Giulini, D. (2005). Special Relativity. Oxford: Oxford University Press.
  245. Landsberg, P. T. (1966). Does a Moving Body appear Cool?. Nature, 212(5062), 571-572.
  246. Landsberg, P. T. (1967). Does a Moving Body appear Cool?. Nature 214(5091), 903-904.
  247. Landsberg, P. T. (1978). Thermodynamics and Statistical Mechanics. Oxford: Oxford University Press.
  248. McCrea, W. H. (1935). Relativity Physics. London: Methuen & Co.
  249. Møller, C. (1972): The Theory of Relativity. Oxford: Clarendon Press.
  250. Nehrlich, G. (1982). Special Relativity is not Based on Causality. British Journal for the Philosophy of Science 33(4), 361-388.
  251. Pauli, W. (1981). Theory of Relativity. (tr. by G. Field). New York: Dover.
  252. Perrot, P. (1998). A to Z of Thermodynamics. Oxford: Oxford University Press. Friedel Weinert -Relativistic Thermodynamics and the Passage of Time 191
  253. Planck, M. (1907). Zur Dynamik bewegter Systeme. Sitzungsberichte der königlichen Preußischen Akademie der Wissenschafte, Berlin Erster Halbband, 29, 542-570.
  254. Reichenbach, H. (1969). Axiomatization of the Theory of Relativity. (tr. by M. Reichenbach). Berkeley, CA: University of California Press. [1924]
  255. Robb, A. A. (1914). A Theory of Time and Space. Cambridge: Cambridge University Press.
  256. Rovelli, C. (2008). Forget Time. <http://arxiv.org/abs/0903.3832>
  257. Schilpp, P. A. (Ed.) (1949). Albert Einstein: Philosopher-Scientist, 2 Volumes. La Salle, IL: Open Court.
  258. Schlegel, R. (1968). Time and the Physical World. New York: Dover.
  259. Schlegel, R. (1977). A Lorentz-Invariant Clock. Foundations of Physics 7(3,4), 245-253.
  260. Schlick, M. (1917). Raum und Zeit in der gegenwärtigen Physik. Die Naturwissenschaft, 5(12), 177-186.
  261. Tolman, R. C. (1934). Relativity, Thermodynamics and Cosmology. Oxford: Clarendon Press.
  262. Van Fraassen, B. (1980). The Scientific Image. Oxford: Oxford University Press.
  263. Van Fraassen, B. (1991). Quantum Mechanics: An Empiricist View. Oxford: Oxford University Press. REFERENCES
  264. Armstrong, D. M. (1978). Universals and Scientific Realism. Cambridge: Cambridge University Press.
  265. Armstrong, D. M. (1983). What is a Law of Nature?. Cambridge: Cambridge University Press.
  266. Lewis, D. (1973). Counterfactuals. Cambridge, MA: Harvard University Press.
  267. Lewis, D. (1986). Philosophical Papers, vol. II. Oxford: Oxford University Press.
  268. McDermott, M. (1995). Redundant Causation. British Journal for the Philosophy of Science, 46(4), 523-544.
  269. Vallentyne, P. (1988). Explicating Lawhood. Philosophy of Science, 55(4), 598-613.
  270. Van Fraassen, B. (1989). Laws and Symmetry. Oxford: Clarendon Press. world. And along with that it has lost its appeal as a creative activity and its fascination of being capable of true human emancipation. And these observations are, unluckily, true. Rovelli's book then becomes even more important for it gives us back an image of science that is but the great image that another major physicist of our time, John Bell has left us. The Enterprise is to understand the world and we should never betray the Enterprise. REFERENCES
  271. Albert, D. Z. (1992). Quantum Mechanics and Experience. Cambridge, MA: Harvard University Press.
  272. Barrett, J. A. (1999). The Quantum Mechanics of Minds and Worlds. Oxford: Oxford University Press.
  273. Barrett, J. A. (2008). Everett"s Relative-State Formulation of Quantum Mechanics. In Stanford Encyclopedia of Philosophy. <http://plato.stanford.edu/entries/qm-everett/>
  274. DeWitt, B. S., & Graham, R. N. (Eds.) (1973). The Many-Worlds Interpretation of Quantum Mechanics. Princeton, NJ: Princeton University Press.
  275. Everett, H. (1957a). On the Foundations of Quantum Mechanics. Ph.D. Thesis, Princeton, NJ: Princeton University, Department of Physics.
  276. Everett, H. (1957b). Relative State Formulation of Quantum Mechanics. Reviews of Modern Physics, 29(3), 454-462.
  277. Everett, H. (1973). The Theory of the Universal Wave Function. In B. S. DeWitt & R. N. Graham (Eds.) (1973), The Many-Worlds Interpretation of Quantum Mechanics. Princeton, NJ: Princeton University Press.
  278. Van Fraassen, B. (2008). Scientific Representation: Paradoxes of Perspective. Oxford: Oxford University Press.
  279. Wigner, E. (1961). Remarks on the Mind-Body Problem. In I. J. Good (Ed.), The Scientist Speculates (pp. 284-302). London: Basic Books. REFERENCES
  280. Abruzzese, J. (2001). On Using the Multiverse to Avoid the Paradoxes of Time Travel. Analysis, 61(1), 36-38.
  281. Arntzenius, F., & Maudlin, T. (2002). Time Travel and Modern Physics. In C. Callender (Ed.), Time, Reality and Experience (pp. 169-200). Cambridge: Cambridge University Press. An updated version (2009) is in Stanford Encyclopedia of Philosophy. <http://plato.stanford.edu/entries/time-travel-phys/>
  282. Varzi 2001 fiddles with the idea in a more traditional possible worlds context. Commentary -The Labyrinth of Time
  283. Bourne, C. (2006). A Future for Presentism. Oxford: Oxford University Press.
  284. Calosi, C. (2009). Dust and Time: On Relativity Theory and the Reality of Time. Humana.Mente, 8. <www.humanamente.eu/PDF/Paper_Dust%20and%20Time%20_iss ue%208.pdf>
  285. Deutsch, D. (1996). Comment on Lockwood. The British Journal for the Philosophy of Science, 47(2), 222-228.
  286. Dorato, M. (2002). On Becoming, Cosmic Time and Rotating Universes. In C. Callender (Ed.), Time, Reality and Experience (pp. 253-276). Cambridge: Cambridge University Press.
  287. Earman, J. (1972). Implications of Causal Propagation Outside the Null Cone. Australasian Journal of Philosophy, 50(3), 222-237.
  288. Earman, J., & Wuthrich, C. (2004). Time Machines. In Stanford Encyclopedia of Philosophy. <http://plato.stanford.edu/entries/time-machine/>
  289. Echeverria, F., Klinkhammer, G., & Thorne, K. (1991). Billiard Ball in Wormhole Spacetimes with Closed Timelike Curves: Classical Theory. Physical Review D, 44(4), 1077-1099.
  290. Feynman, R., & Wheeler, J. (1949). Classical Electrodynamics in Terms of Direct Interparticle Action. Reviews of Modern Physics, 21(3), 425- 434.
  291. Harrison, J. (1971). Dr. Who and the Philosophers or Time Travel for Beginners. Aristotelian Society Supplementary, 45(2), 1-24.
  292. Horwich, P. (1975). On Some Alleged Paradoxes of Time Travel. Journal of Philosophy, 72(14), 435-436.
  293. Lewis, D. (1976). The Paradoxes of Time Travel. American Philosophical Quarterly, 13(2), 145-152.
  294. Lucas, J. R. (1999). A Century of Time. In J. N. Butterfield (Ed.), The Arguments of Time (pp. 1-20). Oxford: Oxford University Press.
  295. Sider, T. (1997). A New Grandfather Paradox?. Philosophy and Phenomenological Research, 57(1), 139-144.
  296. Bell, J. S. (1987). How to Teach Special Relativity. In Speakable and Unspeakable in Quantum Mechanics. Cambridge: Cambridge University Press.
  297. Brown, H. (2005). Physical Relativity. New York: Oxford University Press.
  298. Earman, J. (1989). World Enough and Space-Time. Cambridge, MA: MIT Press.
  299. Geroch, R. (1978). General Relativity from A to B. Chicago: University of Chicago Press.
  300. Malament, D. (2010). Relativistic and Newtonian Spacetime Structure. Unpublished lecture, notes available at <www.lps.uci.edu/malament/>
  301. Stein, H. (1967). Newtonian Space-Time. The Texas Quarterly, 10(3), 174- 200. Also in R. Palter (Ed.) (1970), The Annus Mirabilis of Sir Isaac Newton (pp. 258-284). Cambridge, MA: MIT Press.