Toward an Axiomatic Pregeometry of Space-Time
https://doi.org/10.1023/A:1026662624154Abstract
We present a deductive theory of space-time which is realistic, objective, and relational. It is realistic because it assumes the existence of physical things endowed with concrete properties. It is objective because it can be formulated without any reference to knowing subjects or sensorial fields. Finally, it is relational because it assumes that space-time is not a thing, but a complex of relations among things. In this way, the original program of Leibniz is consummated, in the sense that space is ultimately an order of coexistents, and time is an order of successives. In this context, we show that the metric and topological properties of Minkowskian space-time are reduced to relational properties of concrete things. We also sketch how our theory can be extended to encompass a Riemannian space-time.
References (22)
- " x) X (" y) X (x 3 Ç )y Þ L)
- point, because the (pseudomet- ric) distance between any two components of the family is zero. A15. Let j and h be two ontic points. Then (" xi)j (" yj)h ($ C (j , h ))(dp(xi , yj) , C (j , h )).
- Alexander, H. G., ed. (1983). Leibniz± Clarke Correspondence , Manchester University Press, Manchester, U.K.
- Basri, S. A. (1966). A Deductive Theory of Space and Time, North-Holland , Amsterdam. Blumenthal, L. (1965). Geometrõ  a Axioma tica, Aguilar, Madrid.
- Borges, J. L. (1967). Ficciones, Losada, Buenos Aires.
- Bourbaki, N. (1964). Topologie Ge ne rale, Fascicule de Re sultats, Hermann, Paris.
- Bunge, M. (1977). Treatise of Basic Philosophy. Ontology I: The Furniture of the World, Reidel, Dordrecht.
- Bunge, M. (1979). Treatise of Basic Philosophy. Ontology II: A World of Systems, Reidel, Dordrecht.
- Bunge, M., and Garcõ  a Ma  ynez, A. (1977). International Journal of Theoretical Physics, 15, 961.
- Carnap, R. (1928). Der logische Aufbau der Welt [English translation: The Logical Structure of the World, University of California Press, Berkeley (1967)].
- Covarrubias, G. M. (1993). International Journal of Theoretical Physics, 32, 2135.
- Galilei, G. (1945). Dialogues Concerning Two New Sciences, H. Crew and A. de Sabio, transl., Dover, New York.
- Garay, J. (1995). International Journal of Modern Physics A, 10, 145.
- Gibbs, P. (1996). International Journal of Theoretical Physics, 35, 1037.
- Kelley, J. (1962). Topologõ Â a General, EUDEBA, Buenos Aires.
- Landau, L. D., and Lifshitz, E. M. (1967). The orie du Champ, MIR, Moscow.
- Misner, C., Thorne, K., and Wheeler, J. A. (1973). Gravitation , Freeman, San Francisco. Perez Bergliaffa, S. E., Romero, G. E., and Vucetich, H. (1993). International Journal of Theoretical Physics, 32, 1507.
- Perez Bergliaffa, S. E., Romero, G. E., and Vucetich, H. (1996). International Journal of Theoretical Physics, 35, 1805.
- Rey Pastor, J., Pi Calleja, P. y Trejo, C. (1952), Ana lisis Matema tico, Vol. I, Kapelusz, Bue- nos Aires.
- Salomaa, A. (1973). Formal Languages, Academic Press, Boston. Tegmark, M. (1997). Classical and Quantum Gravity, 14, L69.
- Thron, W. J. (1966). Topological Structures , Holt, Rinehart and Winston, New York.
- Weinberg, S. (1972). Relativity and Gravitation, Wiley, New York.