Academia.eduAcademia.edu

Outline

Subleading critical exponents from the renormalisation group

2003

Abstract

We study exact renormalisation group equations for the 3d Ising universality class. At the Wilson-Fisher fixed point, symmetric and antisymmetric correction-to-scaling exponents are computed with high accuracy for an optimised cutoff to leading order in the derivative expansion. Further results are derived for other cutoffs including smooth, sharp and background field cutoffs. An estimate for higher order corrections is given as well. We establish that the leading antisymmetric corrections to scaling are strongly subleading compared to the leading symmetric ones.

References (30)

  1. A. Pelissetto and E. Vicari, Phys. Rept. 368 (2002) 549 [cond-mat/0012164].
  2. R. D. Pisarski and F. Wilczek, Phys. Rev. D 29 (1984) 338.
  3. S. Gavin, A. Gocksch and R. D. Pisarski, Phys. Rev. D 49 (1994) 3079 [hep-ph/9311350], F. Karsch, E. Laermann and C. Schmidt, Phys. Lett. B 520 (2001) 41 [hep-lat/0107020].
  4. K. Rummukainen, M. Tsypin, K. Kajantie, M. Laine and M. E. Shaposhnikov, Nucl. Phys. B 532 (1998) 283 [hep-lat/9805013].
  5. F.J. Wegner, Phys. Rev. B 6 (1972) 1891; J.F. Nicoll, Phys. Rev. A 24 (1981) 2203;
  6. J.F. Nicoll and R.K.P. Zia, Phys. Rev. B 23 (1981) 6157; F.C. Zhang and R.K.P. Zia, J. Phys. A 15 (1982) 3303.
  7. E. K. Newman, K. E. Riedel, Phys. Rev. B 30 (1984) 6615.
  8. M. M. Tsypin, Nucl. Phys. B 636 (2002) 601 [hep-lat/0112001].
  9. C. Bagnuls and C. Bervillier, Phys. Rept. 348 (2001) 91 [hep-th/0002034];
  10. J. Berges, N. Tetradis and C. Wetterich, Phys. Rept. 363 (2002) 223 [hep-ph/0005122];
  11. J. Polonyi, Central Eur. Sci. J. Phys. 1 (2002) 1, [hep-th/0110026].
  12. D. F. Litim, Phys. Lett. B 486 (2000) 92 [hep-th/0005245], Phys. Rev. D 64 (2001) 105007 [hep-th/0103195], Int. J. Mod. Phys. A 16 (2001) 2081 [hep-th/0104221], hep-th/0208117.
  13. G. R. Golner, Phys. Rev. B33 (1986) 7863.
  14. D. F. Litim, JHEP 0111 (2001) 059 [hep-th/0111159].
  15. D. F. Litim, Nucl. Phys. B 631 (2002) 128 [hep-th/0203006].
  16. F. Freire and D. F. Litim, Phys. Rev. D 64 (2001) 045014 [hep-ph/0002153].
  17. A. Margaritis, G. Odor and A. Patkos, Z. Phys. C 39 (1988) 109.
  18. T. R. Morris, Phys. Lett. B 329 (1994) 241 [hep-ph/9403340].
  19. J. Comellas and A. Travesset, Nucl. Phys. B 498 (1997) 539 [hep-th/9701028].
  20. C. Bagnuls, C. Bervillier and M. Shpot, unpublished.
  21. D. F. Litim and J. M. Pawlowski, Phys. Lett. B 546, 279 (2002) [hep-th/0208216].
  22. D. F. Litim and J. M. Pawlowski, Phys. Rev. D 66, 025030 (2002) [hep-th/0202188];
  23. Phys. Rev. D 65, 081701 (2002) [hep-th/0111191].
  24. S. B. Liao, Phys. Rev. D 53 (1996) 2020 [hep-th/9501124].
  25. D. F. Litim and J. M. Pawlowski, Phys. Lett. B 516, 197 (2001) [hep-th/0107020].
  26. M. Mazza and D. Zappala, Phys. Rev. D 64 (2001) 105013 [hep-th/0106230].
  27. J. Polchinski, Nucl. Phys. B231 (1984) 269.
  28. R. D. Ball, P. E. Haagensen, J. I. Latorre and E. Moreno, Phys. Lett. B 347 (1995) 80.
  29. C. Bervillier, private communication.
  30. A. Kostrowicka Wyczalkowska and J.V. Sengers, J. Chem. Phys. 111 (1999) 1551.