Critical Exponents of the 3-D Ising Model
1996, International Journal of Modern Physics C
https://doi.org/10.1142/S0129183196000247Abstract
We present a status report on the ongoing analysis of the 3D Ising model with nearest-neighbor interactions using the Monte Carlo Renormalization Group (MCRG) and finite size scaling (FSS) methods on $64^3$, $128^3$, and $256^3$ simple cubic lattices. Our MCRG estimates are $K_{nn}^c=0.221655(1)(1)$ and $\nu=0.625(1)$. The FSS results for $K^c$ are consistent with those from MCRG but the value of $\nu$ is not. Our best estimate $\eta = 0.025(6)$ covers the spread in the MCRG and FSS values. A surprise of our calculation is the estimate $\omega \approx 0.7$ for the correction-to-scaling exponent. We also present results for the renormalized coupling $g_R$ along the MCRG flow and argue that the data support the validity of hyperscaling for the 3D Ising model.
References (11)
- C. Baillie, R. Gupta, K. Hawick, and S. Pawley, Phys. Rev. B45 (1992) 10438
- G. S. Pawley, R. H. Swendsen, D. J. Wallace and K. G. Wilson, Phys. Rev. B29 (1984) 4030.
- H. W. J. Blöte, A. Compagner, J. H. Croockewit, Y. T. J. C. Fonk, J. R. Heringa, A. Hoogland, T. S. Smit and A. L. van Willigen, Physica A161 (1989) 1.
- R. Swendsen and J. S. Wang, Phys. Rev. Lett. 58 (1987) 86.
- A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 61 (1988) 2635.
- A. Ferrenberg, and D. Landau, Phys. Rev. B44 (1991) 5081.
- B. Freedman and G. Baker, J. Phys. A: Math. Gen. 15 (1982) L715.
- H. Blöte, E. Luijten, and J. Heringa, cond-mat/9509016.
- S. Zinn and M. Fisher, Maryland Preprint, Nov 1995.
- G. Baker and N. Kawashima, Phys. Rev. Lett. 75 (1995) 994.
- G. Baker, Quantitative Theory of Critical Phenomena, Academic Press, 1990.