Academia.eduAcademia.edu

Outline

Critical Exponents of the 3-D Ising Model

1996, International Journal of Modern Physics C

https://doi.org/10.1142/S0129183196000247

Abstract

We present a status report on the ongoing analysis of the 3D Ising model with nearest-neighbor interactions using the Monte Carlo Renormalization Group (MCRG) and finite size scaling (FSS) methods on $64^3$, $128^3$, and $256^3$ simple cubic lattices. Our MCRG estimates are $K_{nn}^c=0.221655(1)(1)$ and $\nu=0.625(1)$. The FSS results for $K^c$ are consistent with those from MCRG but the value of $\nu$ is not. Our best estimate $\eta = 0.025(6)$ covers the spread in the MCRG and FSS values. A surprise of our calculation is the estimate $\omega \approx 0.7$ for the correction-to-scaling exponent. We also present results for the renormalized coupling $g_R$ along the MCRG flow and argue that the data support the validity of hyperscaling for the 3D Ising model.

References (11)

  1. C. Baillie, R. Gupta, K. Hawick, and S. Pawley, Phys. Rev. B45 (1992) 10438
  2. G. S. Pawley, R. H. Swendsen, D. J. Wallace and K. G. Wilson, Phys. Rev. B29 (1984) 4030.
  3. H. W. J. Blöte, A. Compagner, J. H. Croockewit, Y. T. J. C. Fonk, J. R. Heringa, A. Hoogland, T. S. Smit and A. L. van Willigen, Physica A161 (1989) 1.
  4. R. Swendsen and J. S. Wang, Phys. Rev. Lett. 58 (1987) 86.
  5. A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 61 (1988) 2635.
  6. A. Ferrenberg, and D. Landau, Phys. Rev. B44 (1991) 5081.
  7. B. Freedman and G. Baker, J. Phys. A: Math. Gen. 15 (1982) L715.
  8. H. Blöte, E. Luijten, and J. Heringa, cond-mat/9509016.
  9. S. Zinn and M. Fisher, Maryland Preprint, Nov 1995.
  10. G. Baker and N. Kawashima, Phys. Rev. Lett. 75 (1995) 994.
  11. G. Baker, Quantitative Theory of Critical Phenomena, Academic Press, 1990.