Abstract
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the US. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. The Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. om No. 836 R5 ~~~~~~~~~~~~ OF %-!!$ ~~~~~~~~~~ 1s ~~~~~~~~~~~ ST 2629 10/91 DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
Key takeaways
AI
AI
- The critical coupling estimate for the 3D Ising model is Kc = 0.221655(2).
- Corrections-to-scaling exponent w is estimated at 0.7, significantly lower than previous estimates.
- Correlation length exponent v is determined as 0.625(1), with a precision requiring larger lattice sizes.
- The correlation function exponent η is estimated at 0.025(6), consistent with MCRG results.
- This text summarizes advancements in understanding critical exponents using Monte Carlo Renormalization Group (MCRG) methods.
References (11)
- C. Baillie, R. Gupta, K. Hawick, and S. Pawley, Phys. Rev. B45 (1992) 10438
- G. S. Pawley, R. H. Swendsen, D. J. Wallace and K. G. Wilson, Phys. Rev. B29 (1984) 4030.
- H. W. J. Blote, A. Compagner, J. H. Croockewit, Y. T. J. C. Fonk, J. R. Heringa, A. Hoogland, T. S. Smit and A. L. van Willigen, Physica A161 (1989) 1.
- R. Swendsen and J. S. Wang, Phys. Rev. Lett. 58 (1987) 86.
- A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 61 (1988) 2635.
- A. Ferrenberg, and D. Landau, Phys. Rev. B44 (1991) 5081.
- B. Freedman and G. Baker, J. Phys. A: Math. Gen. 15 (1982) L715.
- H. Blote, E. Luijten, and J. Heringa, cond-mat/9509016.
- S. Zinn and M. Fisher, Maryland Preprint, Nov 1995.
- G. Baker and N. Kawashima, Phys. Rev. Lett. 75 (1995) 994.
- G. Baker, Quantitative Theory of Critical Phenomena, Academic Press, 1990.