Academia.eduAcademia.edu

Outline

Modeling social group interactions for realistic crowd behaviors

2013

Abstract

In the simulation of human crowd behavior including evacuation planning, transportation management, and safety engineering in architecture design, the development of pedestrian model for higher behavior fidelity is an important task. To construct plausible facsimiles of real crowd movements, simulations should exhibit human behaviors for navigation, pedestrian decision-making, and social behaviors such as grouping and crowding. The research field is quite mature in some sense, with a large number of approaches that have been proposed to path finding, collision avoidance, and visually pleasing steering behaviors of virtual humans. However, there is still a clear disparity between the variety of approaches and the quality of crowd behaviors in simulations. Many social science field studies inform us that crowds are typically composed of multiple social groups (James, 1953; Coleman and James, 1961; Aveni, 1977). These observations indicate that one component of the complexity of crowd ...

FAQs

sparkles

AI

What major impact does social group modeling have on crowd simulation outcomes?add

The study finds that incorporating social group interactions notably influences crowd distribution, with dynamic congestion levels significantly affected by the communication behavior of groups.

How does Common Ground theory inform group navigation strategies?add

The research operationalizes Common Ground theory to manage group navigational activities, requiring members to maintain mutual awareness of goals and actions, enhancing coordination.

What experiments validated the effectiveness of the CGCS model in simulations?add

A series of user studies demonstrated that the CGCS model led to higher plausibility ratings, as participants found animations incorporating social interactions more believable.

How does the micro-coordination process affect crowd dynamics?add

The micro-coordination process incurs behavioral costs, resulting in increased congestion levels compared to non-social crowd models, underscoring the significance of communication in group dynamics.

What measures were used to evaluate the realism of crowd animations?add

Realism was assessed through perceptual user studies measuring participants' ability to distinguish between real and synthetic animations, alongside ratings of plausibility on a Likert scale.

References (118)

  1. Antonini, G., Bierlaire, M., and Weber, M. (2006). Discrete choice models of pedestrian walking behavior. Transportation Research Part B: Methodological, 40(8):667 -687.
  2. Arkin, R. C. (1990). Integrating behavioral, perceptual, and world knowledge in reactive navigation. Robot. Auton. Syst., 6:105-122.
  3. Aveni, A. F. (1977). The Not-So-Lonely Crowd: Friendship Groups in Collective Behavior. Sociometry, 40(1):96-99.
  4. Bouchet, F. and Sansonnet, J. (2011). Influence of personality traits on the rational process of cognitive agents. In Web Intelligence and Intelligent Agent Technology (WI-IAT), 2011 IEEE/WIC/ACM International Conference on, volume 2, pages 81 -88.
  5. Bowlby, J. (1982). Attachment and loss: Retrospect and prospect. American Journal of Orthopsychiatry, 52(4):664-678.
  6. Brogan, D. C. and Hodgins, J. K. (1997). Group behaviors for systems with significant dynamics. Auton. Robots, 4:137-153.
  7. Brogan, D. C. and Johnson, N. L. (2003). Realistic human walking paths. In Proc. of the 16th Intl. Conf. on Computer Animation and Social Agents (CASA 2003), CASA '03, pages 94-101. IEEE Computer Society.
  8. Bruner, J. (1991). The narrative construction of reality. Critical inquiry, 18(1):1-21.
  9. Cassell, J., Vilhjálmsson, H. H., and Bickmore, T. (2001). Beat: the behavior expression animation toolkit. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques, SIGGRAPH '01, pages 477-486, New York, NY, USA. ACM.
  10. Castellano, G., Mancini, M., Peters, C., and McOwan, P. (2012). Expressive copying behavior for social agents: A perceptual analysis. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, 42(3):776 -783.
  11. Chenney, S. (2004). Flow tiles. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation, SCA '04, pages 233-242, Aire-la-Ville, Switzerland, Switzerland. Eurographics Association.
  12. Cho, K., Iketani, N., Kikuchi, M., Nishimura, K., Hayashi, H., and Hattori, M. (2008). Bdi model-based crowd simulation. In Proceedings of the 8th international conference on Intelligent Virtual Agents, IVA '08, pages 364-371, Berlin, Heidelberg. Springer-Verlag.
  13. Clark, H. H. (1996). Using Language. Cambridge University Press.
  14. Clark, H. H. and Brennan, S. E. (1991). Grounding in communication. In Resnick, L. B., Levine, J. M., and Teasley, S. D., editors, Perspectives on Socially Shared Cognition, pages 127-149. American Psychological Association, Washington DC.
  15. Coleman, J. S. and James, J. (1961). The equilibrium size distribution of freely-forming groups. Sociometry, 24(1):pp. 36-45.
  16. Convertino, G., Mentis, H. M., Rosson, M. B., Carroll, J. M., Slavkovic, A., and Ganoe, C. H. (2008). Articulating common ground in cooperative work: content and process. In Proceeding of the twenty-sixth annual SIGCHI conference on Human factors in computing systems, CHI '08, pages 1637-1646, New York, NY, USA. ACM.
  17. Endrass, B., André, E., Rehm, M., Lipi, A. A., and Nakano, Y. (2011). Culture-related differences in aspects of behavior for virtual characters across germany and japan. In The 10th Intl. Conf. on Autonomous Agents and Multiagent Systems, volume 2 of AAMAS '11, pages 441-448.
  18. Ennis, C., McDonnell, R., and O'Sullivan, C. (2010). Seeing is believing: body motion dominates in multisensory conversations. ACM Trans. Graph., 29:1-9.
  19. Ennis, C. and O'Sullivan, C. (2012). Perceptually plausible formations for virtual conversers. Computer Animation and Virtual Worlds, 23(3-4):321-329.
  20. Ennis, C., Peters, C., and O'Sullivan, C. (2008). Perceptual evaluation of position and orientation context rules for pedestrian formations. In Proceedings of the 5th symposium on Applied perception in graphics and visualization, APGV '08, pages 75-82, New York, NY, USA. ACM.
  21. Ennis, C., Peters, C., and O'Sullivan, C. (2011). Perceptual effects of scene context and viewpoint for virtual pedestrian crowds. ACM Trans. Appl. Percept., 8(2):10:1-10:22.
  22. Festinger, L. (1954). A Theory of Social Comparison Processes. Bobbs-Merrill reprint series in the social sciences. Bobbs-Merrill.
  23. Fiorini, P. and Shillert, Z. (1998). Motion planning in dynamic environments using velocity obstacles. International Journal of Robotics Research, 17:760-772.
  24. Fridman, N., Zilka, A., and Kaminka, G. A. (2012). The impact of cultural differences on crowd dynamics in pedestrian and evacuation domains. In In Proceedings of the Eleventh International Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS-12), page An Extended Abstract.
  25. Funge, J., Tu, X., and Terzopoulos, D. (1999). Cognitive modeling: knowledge, reasoning and planning for intelligent characters. In Proceedings of the 26th annual conference on Computer graphics and interactive techniques, SIGGRAPH '99, pages 29-38, New York, NY, USA. ACM Press/Addison-Wesley Publishing Co.
  26. Gu, Q. and Deng, Z. (2011). Context-aware motion diversification for crowd simulation. IEEE Computer Graphics and Applications, 31:54-65.
  27. Guy, S. J., Chhugani, J., Kim, C., Satish, N., Lin, M., Manocha, D., and Dubey, P. (2009). Clearpath: highly parallel collision avoidance for multi-agent simulation. In Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA '09, pages 177-187, New York, NY, USA. ACM.
  28. Guy, S. J., Curtis, S., Lin, M. C., and Manocha, D. (2010). Pledestrians -a least- effort approach to crowd simulation. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation 2010.
  29. Guy, S. J., Curtis, S., Lin, M. C., and Manocha, D. (2012). Least-effort trajectories lead to emergent crowd behaviors. Phys. Rev. E, 85:016110.
  30. Guy, S. J., Kim, S., Lin, M. C., and Manocha, D. (2011). Simulating heterogeneous crowd behaviors using personality trait theory. In Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA '11, pages 43-52, New York, NY, USA. ACM.
  31. Hart, P., Nilsson, N., and Raphael, B. (1968). A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics, 4(2):100-107.
  32. Helbing, D., Farkas, I., and Vicsek, T. (2000). Simulating dynamical features of escape panic. Nature, 407(6803):487-490.
  33. Helbing, D., Moln, P., Farkas, I. J., and Bolay, K. (2001). Self-organizing pedestrian movement. Environment and Planning B: Planning and Design, 28(3):361-383.
  34. Helbing, D. and Molnar, P. (1995). Social force model for pedestrian dynamics. PHYSICAL REVIEW E, 51:4282.
  35. Hoogendoorn, M. and Soumokil, J. (2010). Evaluation of virtual agents utilizing theory of mind in a real time action game. In van der Hoek, Kaminka, Lespérance, Luck, and Sen, editors, Proceedings of the 9th Intl. Conf. on Autonomous Agents and Multiagent Systems, volume 1 of AAMAS '10, pages 59-66, Richland, SC. International Foundation for Autonomous Agents and Multiagent Systems.
  36. Hoogendoorn, S. P. and Bovy, P. H. L. (2004). Pedestrian route-choice and activity scheduling theory and models. Transportation Research Part B: Methodological, 38(2):169 -190.
  37. Hughes, R. L. (2002). A continuum theory for the flow of pedestrians. Transportation Research Part B: Methodological, 36(6):507 -535.
  38. James, J. (1953). The Distribution of Free-Forming Small Group Size. American Sociological Review, 18(5):569-570.
  39. Jan, D., Herrera, D., Martinovski, B., Novick, D., and Traum, D. (2007). A computational model of culture-specific conversational behavior. In Proceedings of the 7th international conference on Intelligent Virtual Agents, IVA '07, pages 45-56, Berlin, Heidelberg. Springer-Verlag.
  40. Jarabo, A., Eyck, T. V., Sundstedt, V., Bala, K., Gutierrez, D., and O'Sullivan, C. (2012). Crowd light: Evaluating the perceived fidelity of illuminated dynamic scenes. Comp. Graph. Forum, 31(2pt4):565-574.
  41. Jin, X., Xu, J., Wang, C. C. L., Huang, S., and Zhang, J. (2008). Interactive control of large-crowd navigation in virtual environments using vector fields. IEEE Comput. Graph. Appl., 28:37-46.
  42. Ju, E., Choi, M. G., Park, M., Lee, J., Lee, K. H., and Takahashi, S. (2010). Morphable crowds. ACM Trans. Graph., 29(6):140:1-140:10.
  43. Kachroo, P. (2008). Pedestrian Dynamics. Understanding Complex Systems. Springer-Verlag Berlin Heidelberg.
  44. Kachroo, P. (2009). Pedestrian Dynamics: Mathematical Theory and Evacuation Control. CRC Press.
  45. Kaminka, G. and Fridman, N. (2006). A cognitive model of crowd behavior based on social comparison theory. In Proceedings of the AAAI-2006 workshop on cognitive modeling.
  46. Kamphuis, A. and Overmars, M. H. (2004). Finding paths for coherent groups using clearance. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation, SCA '04, pages 19-28, Aire-la-Ville, Switzerland, Switzerland. Eurographics Association.
  47. Kapadia, M., Singh, S., Hewlett, W., and Faloutsos, P. (2009). Egocentric affordance fields in pedestrian steering. In Proceedings of the 2009 symposium on Interactive 3D graphics and games, I3D '09, pages 215-223, New York, NY, USA. ACM.
  48. Kapadia, M., Wang, M., Singh, S., Reinman, G., and Faloutsos, P. (2011). Scenario space: characterizing coverage, quality, and failure of steering algorithms. In Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA '11, pages 53-62, New York, NY, USA. ACM.
  49. Karamouzas, I. and Overmars, M. (2010). Simulating the local behaviour of small pedestrian groups. In Proceedings of the 17th ACM Symposium on Virtual Reality Software and Technology, VRST '10, pages 183-190, New York, NY, USA. ACM.
  50. Karamouzas, I. and Overmars, M. (2012). Simulating and evaluating the local behavior of small pedestrian groups. IEEE Transactions on Visualization and Computer Graphics, 18(3):394-406.
  51. Kim, M., Hwang, Y., Hyun, K., and Lee, J. (2012a). Tiling motion patches. In Proceedings of the 2012 ACM SIGGRAPH/Eurographics symposium on Computer animation, SCA '12, Aire-la-Ville, Switzerland, Switzerland. Eurographics Association.
  52. Kim, S., Guy, S. J., Manocha, D., and Lin, M. C. (2012b). Interactive simulation of dynamic crowd behaviors using general adaptation syndrome theory. In Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, I3D '12, pages 55-62, New York, NY, USA. ACM.
  53. Kirby, R., Simmons, R., and Forlizzi, J. (2009). Companion: A constraint-optimizing method for person-acceptable navigation. In Robot and Human Interactive Communication, 2009. RO-MAN 2009. The 18th IEEE International Symposium on, pages 607 -612.
  54. Klein, G., Feltovich, P. J., Bradshaw, J. M., and Woods, D. D. (2005). Common ground and coordination in joint activity. In Rouse, W. B. and Boff, K. R., editors, Organizational Simulation, pages 139-184. John Wiley and Sons, Inc.
  55. Knowles, E. S. (1973). Boundaries around group interaction: The effect of group size and member status on boundary permeability. Journal of Personality and Social Psychology, 26(3):327 -331.
  56. Knowles, E. S., Kreuser, B., Haas, S., and Hyde, M. (1976). Group size and the extension of social space boundaries. Journal of Personality and Social Psychology, 33(5):647 -654.
  57. Koh, W. L. and Zhou, S. (2011). Modeling and simulation of pedestrian behaviors in crowded places. ACM Trans. Model. Comput. Simul., 21(3):20:1-20:23.
  58. Kretz, T., Kaufman, M., and Schreckenberg, M. (2008). Counterflow extension for the f.a.s.t.-model. In Umeo, H., Morishita, S., Nishinari, K., Komatsuzaki, T., and Bandini, S., editors, Cellular Automata, volume 5191 of Lecture Notes in Computer Science, pages 555-558. Springer Berlin Heidelberg.
  59. Lai, Y.-C., Chenney, S., and Fan, S. (2005). Group motion graphs. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, SCA '05, pages 281-290, New York, NY, USA. ACM.
  60. Larkin, M. and O'Sullivan, C. (2011). Perception of simplification artifacts for animated characters. In Proceedings of the ACM SIGGRAPH Symposium on Applied Perception in Graphics and Visualization, APGV '11, pages 93-100, New York, NY, USA. ACM.
  61. Lau, M. and Kuffner, J. J. (2005). Behavior planning for character animation. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, SCA '05, pages 271-280, New York, NY, USA. ACM.
  62. Lee, K. H., Choi, M. G., Hong, Q., and Lee, J. (2007). Group behavior from video: a data-driven approach to crowd simulation. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation, SCA '07, pages 109-118, Aire-la-Ville, Switzerland, Switzerland. Eurographics Association.
  63. Lee, K. H., Choi, M. G., and Lee, J. (2006). Motion patches: building blocks for virtual environments annotated with motion data. ACM Trans. Graph., 25(3):898-906.
  64. Lemercier, S., Jelic, A., Kulpa, R., Hua, J., Fehrenbach, J., Degond, P., Appert-Rolland, C., Donikian, S., and Pettre, J. (2012). Realistic following behaviors for crowd simulation. Comp. Graph. Forum, 31(2pt2):489-498.
  65. Li, Y., Wang, T., and Shum, H.-Y. (2002). Motion texture: a two-level statistical model for character motion synthesis. ACM Trans. Graph., 21(3):465-472.
  66. Liu, C. K., Hertzmann, A., and Popović, Z. (2006). Composition of complex optimal multi- character motions. In Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium on Computer animation, SCA '06, pages 215-222, Aire-la-Ville, Switzerland, Switzerland. Eurographics Association.
  67. Luo, L., Zhou, S., Cai, W., Lees, M., and Low, M. Y. H. (2010). Modeling human-like decision making for virtual agents in time-critical situations. In Proceedings of the 2010 International Conference on Cyberworlds, CW '10, pages 360-367, Washington, DC, USA. IEEE Computer Society.
  68. Luo, L., Zhou, S., Cai, W., Low, M. Y. H., Tian, F., Wang, Y., Xiao, X., and Chen, D. (2008). Agent-based human behavior modeling for crowd simulation. Computer Animation and Virtual Worlds, 19(3-4):271-281.
  69. Mateas, M. and Sengers, P. (2003). Narrative Intelligence. Advances in Consciousness Research Series. John Benjamins Pub.
  70. McDonnell, R., Larkin, M., Dobbyn, S., Collins, S., and O'Sullivan, C. (2008). Clone attack! perception of crowd variety. ACM Trans. Graph., 27(3):26:1-26:8.
  71. McDonnell, R., Larkin, M., Hernández, B., Rudomin, I., and O'Sullivan, C. (2009). Eye- catching crowds: saliency based selective variation. ACM Trans. Graph., 28(3):55:1-55:10.
  72. Monk, A. (2003). Common Ground in Electronically Mediated Communication: Clark's Theory of Language Use. In Carroll, J., editor, HCI Models, Theories and Frameworks: Toward a Multi-Disciplinary Science, chapter 10, pages 265-290. Morgan Kaufmann.
  73. Moussaïd, M., Perozo, N., Garnier, S., Helbing, D., and Theraulaz, G. (2010). The Walking Behaviour of Pedestrian Social Groups and Its Impact on Crowd Dynamics. PLoS ONE, 5(4):e10047+.
  74. Musse, S. R. and Thalmann, D. (1997). A Model of Human Crowd Behavior: Group Inter-Relationship and Collision Detection Analysis. In Workshop Computer Animation and Simulation of Eurographics, pages 39-52.
  75. Narain, R., Golas, A., Curtis, S., and Lin, M. C. (2009). Aggregate dynamics for dense crowd simulation. ACM Trans. Graph., 28:122:1-122:8.
  76. Neale, D. C., Carroll, J. M., and Rosson, M. B. (2004). Evaluating computer-supported cooperative work: models and frameworks. In Herbsleb, J. D. and Olson, G. M., editors, Proc. of the 2004 ACM conf. on Computer supported cooperative work, CSCW '04, pages 112-121, New York, NY, USA. ACM.
  77. Nickolls, J., Buck, I., Garland, M., and Skadron, K. (2008). Scalable parallel programming with cuda. Queue, 6:40-53.
  78. Pelachaud, C. (2005). Multimodal expressive embodied conversational agents. In Proceedings of the 13th annual ACM international conference on Multimedia, MULTIMEDIA '05, pages 683-689, New York, NY, USA. ACM.
  79. Pelechano, N. (2005). Crowd simulation incorporating agent psychological models, roles and communication. In First International Workshop on Crowd Simulation, pages 21-30.
  80. Pelechano, N., Allbeck, J. M., and Badler, N. I. (2007). Controlling individual agents in high-density crowd simulation. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation, SCA '07, pages 99-108, Aire-la-Ville, Switzerland, Switzerland. Eurographics Association.
  81. Peters, C. and Ennis, C. (2009). Modeling groups of plausible virtual pedestrians. IEEE Comput. Graph. Appl., 29(4):54-63.
  82. Peters, C., Ennis, C., McDonnell, R., and O'Sullivan, C. (2008). Crowds in Context: Evaluating the Perceptual Plausibility of Pedestrian Orientations. pages 33-36.
  83. Pettré, J., Laumond, J.-P., and Siméon, T. (2003). A 2-stages locomotion planner for digital actors. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation, SCA '03, pages 258-264, Aire-la-Ville, Switzerland, Switzerland. Eurographics Association.
  84. Pettré, J., Ondřej, J., Olivier, A.-H., Cretual, A., and Donikian, S. (2009). Experiment-based modeling, simulation and validation of interactions between virtual walkers. In Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA '09, pages 189-198, New York, NY, USA. ACM.
  85. Qiu, F. and Hu, X. (2010). Modeling group structures in pedestrian crowd simulation. Simulation Modelling Practice and Theory, 18(2):190 -205.
  86. Rao, A. S. and Georgeff, M. P. (1995). Bdi-agents: from theory to practice. In Lesser, V. R. and Gasser, L., editors, Proceedings of the First Intl. Conference on Multiagent Systems, pages 312-319, San Francisco. The MIT Press.
  87. Reynolds, C. (1999). Steering Behaviors for Autonomous Characters. In Game Developers Conference 1999.
  88. Reynolds, C. W. (1987). Flocks, herds and schools: A distributed behavioral model. SIGGRAPH Comput. Graph., 21:25-34.
  89. Seyfried, A., Steffen, B., Klingsch, W., Lippert, T., and Boltes, M. (2007). The fundamental diagram of pedestrian movement revisited -empirical results and modelling. In Schadschneider, A., Pöschel, T., Kühne, R., Schreckenberg, M., and Wolf, D., editors, Traffic and Granular Flow'05, pages 305-314. Springer Berlin Heidelberg.
  90. Shao, W. and et al. (2005). Environmental modeling for autonomous virtual pedestrians.
  91. Shao, W. and Terzopoulos, D. (2007). Autonomous pedestrians. Graphical Models, 69(5-6):246 -274. Special Issue on SCA 2005.
  92. Singh, S., Kapadia, M., Faloutsos, P., and Reinman, G. (2009). SteerBench: a benchmark suite for evaluating steering behaviors. Computer Animation and Virtual Worlds, 9999(9999):n/a+.
  93. Skrba, L. and O'Sullivan, C. (2009). Human perception of quadruped motion. In Proceedings of the 6th Symposium on Applied Perception in Graphics and Visualization, APGV '09, pages 130-130, New York, NY, USA. ACM.
  94. Sommer, R. (1979). Personal space. Prentice Hall.
  95. Stentz, A. and Mellon, I. C. (1993). Optimal and efficient path planning for unknown and dynamic environments. International Journal of Robotics and Automation, 10:89-100.
  96. Stone, M., DeCarlo, D., Oh, I., Rodriguez, C., Stere, A., Lees, A., and Bregler, C. (2004). Speaking with hands: creating animated conversational characters from recordings of human performance. ACM Trans. Graph., 23(3):506-513.
  97. Strauss, A. and Corbin, J. (1990). Basics of qualitative research: grounded theory procedures and techniques. Sage Publications.
  98. Sun, X., Koenig, S., and Yeoh, W. (2008). Generalized adaptive a*. In Proceedings of the 7th international joint conference on Autonomous agents and multiagent systems -Volume 1, AAMAS '08, pages 469-476, Richland, SC. International Foundation for Autonomous Agents and Multiagent Systems.
  99. Takahashi, S., Yoshida, K., Kwon, T., Lee, K. H., Lee, J., and Shin, S. Y. (2009). Spectral-based group formation control. Computer Graphics Forum, 28(2):639-648.
  100. Thomas, G. and Donikian, S. (2000). Virtual humans animation in informed urban environments. In Proceedings of the Computer Animation, CA '00, pages 112-119, Washington, DC, USA. IEEE Computer Society.
  101. Treuille, A., Cooper, S., and Popović, Z. (2006). Continuum crowds. ACM Trans. Graph., 25(3):1160-1168.
  102. Trovato, K. I. and Dorst, L. (2002). Differential a*. IEEE Trans. on Knowl. and Data Eng., 14:1218-1229.
  103. Tsai, J., Fridman, N., Bowring, E., Brown, M., Epstein, S., Kaminka, G., Marsella, S., Ogden, A., Rika, I., Sheel, A., Taylor, M. E., Wang, X., Zilka, A., and Tambe, M. (2011). Escapes: evacuation simulation with children, authorities, parents, emotions, and social comparison. In The 10th Intl. Conf. on Autonomous Agents and Multiagent Systems, volume 2 of AAMAS '11, pages 457-464.
  104. van den Berg, J., Guy, S. J., Snape, J., Lin, M. C., and Manocha, D. (2011). Rvo2 library: Reciprocal collision avoidance for real-time multi-agent simulation. http://gamma.cs.unc.edu/RVO2/.
  105. van den Berg, J., Lin, M., and Manocha, D. (2008a). Reciprocal velocity obstacles for real-time multi-agent navigation. In Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on, pages 1928 -1935.
  106. van den Berg, J., Patil, S., Sewall, J., Manocha, D., and Lin, M. (2008b). Interactive navigation of multiple agents in crowded environments. In Proceedings of the 2008 symposium on Interactive 3D graphics and games, number 9 in I3D '08, pages 139-147.
  107. ACM. Wampler, K., Andersen, E., Herbst, E., Lee, Y., and Popović, Z. (2010). Character animation in two-player adversarial games. ACM Trans. Graph., 29(3):26:1-26:13.
  108. Warren, C. (1989). Global path planning using artificial potential fields. In Robotics and Automation, 1989. Proceedings., 1989 IEEE International Conference on, pages 316 -321 vol.1.
  109. Yeh, H., Curtis, S., Patil, S., van den Berg, J., Manocha, D., and Lin, M. (2008). Composite agents. In Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA '08, pages 39-47, Aire-la-Ville, Switzerland, Switzerland. Eurographics Association.
  110. Yersin, B., Maïm, J., Morini, F., and Thalmann, D. (2008). Real-time crowd motion planning: Scalable avoidance and group behavior. Vis. Comput., 24:859-870.
  111. Zuckerman, I., Kraus, S., and Rosenschein, J. S. (2012). The adversarial activity model for bounded rational agents. Autonomous Agents and Multi-Agent Systems, 24(3):374-409.
  112. !""#$%&'"&(%)%*+$,&-'./0#*1$% !"#$%$&$'$%("')*+,-%,.*/('01 2333*40'5$*60%-,7*8&%$,*2333*93:;<= /)'>?#@&0A7*BC*2:3D3 E:3F2GHI:D3D*J'K*E:3F2GHI3;E; ,L'%)*%0@M-$N,1& .,@#%$,*O$$PQFF...N%0@N-$N,1&
  113. R(-,L@,0**D7*23H2
  114. 8!9 J0'">%#*S&,?7*8,&"A*!"*T'0?
  115. *+,-%,.*/('01*9JVC33333E<27*,KP%0,#*W'X*GH7*23H:=
  116. T,0>,P$&')*Y55,>$#*(5*W(1,)%"A*8(>%')*Z0(&P#*5(0*B%0$&')*[0(.1# =(>&572>3(9
  117. _*6'$,*$O%#*P0(P(#')*"&L@,0*.'#*>(LP'0,17*'##,##,1*'#*"($*0,\&%0%"A*>(LP'0%#("7*(0*>(LP'0%#(" %"5(0L'$%("*.'#*0,-%#,1N
  118. !5*$O%#*!+/*P0($(>()*%#*$(*>(-,0*'"X*($O,0*A0'"$*P0(P(#')#7*P),'#,*>("$'>$*$O,*!+/*(55%>, 9%0@'1L%"M-$N,1&=*%LL,1%'$,)XN