Academia.eduAcademia.edu

Outline

Realistic following behaviors for crowd simulation

2012

Abstract

Abstract While walking through a crowd, a pedestrian experiences a large number of interactions with his neighbors. The nature of these interactions is varied, and it has been observed that macroscopic phenomena emerge from the combination of these local interactions. Crowd models have hitherto considered collision avoidance as the unique type of interactions between individuals, few have considered walking in groups. By contrast, our paper focuses on interactions due to the following behaviors of pedestrians.

References (25)

  1. AW A., KLAR A., MATERNE T., RASCLE M.: Derivation of continuum traffic flow models from microscopic follow-the-leader models. SIAM Journal on Applied Mathemat- ics 63, 1 (2002), pp. 259-278. 2, 3, 6
  2. BRAUN A., MUSSE S. R., DE OLIVEIRA L. P. L., BODMANN B. E. J.: Modeling individual behaviors in crowd simulation. Computer Animation and Social Agents, Interna- tional Conference on 0 (2003), 143. 2
  3. CHATTARAJ U., SEYFRIED A., CHAKROBORTY P.: Comparison of pedestrian fundamental diagram across cultures. Advances in Complex Systems 12 (2009), 393-405. 2
  4. DAAMEN W., HOOGENDOORN S. P.: Qualitative results from pedestrian laboratory experiments. In Pedestrian and evac- uation dynamics (2003), pp. 121-132. 2
  5. FAJEN B.: Affordance-based control of visually guided action. Ecological Psychology 19, 4 (2007), 383-410. 2 [GCC * 10] GUY S. J., CHHUGANI J., CURTIS S., DUBEY P., LIN M., MANOCHA D.: Pledestrians: a least-effort approach to crowd simulation. In Proc. ACM SIGGRAPH/Eurographics Symp. on Computer Animation (2010), pp. 119-128. 8
  6. GCK * 09] GUY S. J., CHHUGANI J., KIM C., SATISH N., LIN M., MANOCHA D., DUBEY P.: Clearpath: highly parallel colli- sion avoidance for multi-agent simulation. In Proc. ACM SIG- GRAPH/Eurographics Symp. on Computer Animation (2009), pp. 177-187. 2
  7. HELBING D., FARKAS I., VICSEK T.: Sim. dynamical features of escape panic. Nature 407 (2000), 487-490. 2, 8
  8. JOHANSSON A., HELBING D., SHUKLA P. K.: Speci- fication of the social force pedestrian model by evolutionary ad- justment to video tracking data. Advances in Complex Systems 10, supp02 (2007), 271-288. 8
  9. KRETZ T., GRÜNEBOHM A., SCHRECKENBERG M.: Experimental study of pedestrian flow through a bottleneck. Journal of Statistical Mechanics: Theory and Experiment, 10 (2006). 2
  10. KARAMOUZAS I., OVERMARS M.: Simulating the local behaviour of small pedestrian groups. In Proc. ACM Symp. on Virtual Reality Software and Technology (2010), pp. 183-190. 2 [Lee76] LEE D. N.: A theory of visual control of braking based on information about time-to-collision. Perception 5, 4 (1976), 437-459. 2
  11. LI T.-Y., JENG Y.-J., CHANG S.-I.: Simulating virtual human crowds with a leader-follower model. In Proc. Computer Animation. (2001), pp. 93 -102. 2
  12. LOSCOS C., MARCHAL D., MEYER A.: Intuitive crowd behaviour in dense urban environments using local laws. Theory and Practice of Computer Graphics 0 (2003), 122. 2 [LMM * 11] LEMERCIER S., MOREAU M., MOUSSAÏD M., THERAULAZ G., DONIKIAN S., PETTRÉ J.: Reconstructing mo- tion capture data for human crowd study. In Motion in Games. 2011, pp. 365-376. 4
  13. MUSSE S., THALMANN D.: Hierarchical model for real time simulation of virtual human crowds. Visualization and Com- puter Graphics, IEEE Trans. on 7, 2 (2001), 152 -164. 2
  14. OND ŘEJ J., PETTRÉ J., OLIVIER A.-H., DONIKIAN S.: A synthetic-vision-based steering approach for crowd simu- lation. ACM SIGGRAPH 2010 Papers (2010). 2, 9
  15. PELECHANO N., ALLBECK J. M., BADLER N. I.: Con- trolling individual agents in high-density crowd simulation. In Proc. ACM SIGGRAPH/Eurographics Symp. on Computer ani- mation (2007), pp. 99-108. 2
  16. POO * 09] PETTRÉ J., OND ŘEJ J., OLIVIER A.-H., CRETUAL A., DONIKIAN S.: Experiment-based modeling, simulation and validation of interactions between virtual walkers. In Proc. ACM SIGGRAPH/Eurographics Symp. on Computer Animation (2009), pp. 189-198. 8
  17. REYNOLDS C. W.: Flocks, herds and schools: A dis- tributed behavioral model. In SIGGRAPH '87: Proc. Computer graphics and interactive techniques (1987), pp. 25-34. 2
  18. REYNOLDS C.: Steering behaviors for autonomous char- acters. In Game Developers Conference (1999). 2, 8
  19. SCHADSCHNEIDER A.: Cellular automaton approach to pedestrian dynamics -theory. In Pedestrian and evacuation dy- namics (2001), pp. 75-86. 2
  20. SEYFRIED A., STEFFEN B., KLINGSCH W., BOLTES M.: The fundamental diagram of pedestrian movement revis- ited. Journal of Statistical Mechanics: Theory and Experiment 10 (2005). 2, 5
  21. SHAO W., TERZOPOULOS D.: Autonomous pedestrians. Graphical Models 69, 5-6 (2007), 246 -274. 2
  22. TREUILLE A., COOPER S., POPOVI Ć Z.: Continuum crowds. In ACM SIGGRAPH 2006 Papers (2006), pp. 1160- 1168. 2
  23. WEIDMANN U.: Transporttechnik der Fussgänger - Transporttechnische Eigenschaften des Fussgängerverkehrs (Lit- eraturstudie). Tech. rep., Institut füer Verkehrsplanung, Trans- porttechnik, Strassen-und Eisenbahnbau IVT an der ETH Zürich, 1993. in German. 5
  24. YAMORI K.: Going with the flow : Micro-macro dynam- ics in the macrobehavioral patterns of pedestrian crowds. Psycho- logical review 105 (1998), 530-557. 2
  25. YILMAZ E. H., WARREN W. H.: Visual control of brak- ing: A test of the τ hypothesis. Journal of Experimental Psy- chology: Human Perception and Performance 21, 5 (1995), 996- 1014. 2