Academia.eduAcademia.edu

Outline

Automata-based presentations of infinite structures

2011, Finite and Algorithmic Model Theory (volume 379 of London Mathematical Society Lecture Notes Series)

Abstract
sparkles

AI

The paper explores automata-based presentations of infinite structures, focusing on the connection between finite model theory and algorithmic model theory. It addresses the challenges and methodologies for extending logical frameworks from finite to infinite structures, particularly in the domains of databases and verification. Central to this study is the requirement for decidable model checking problems for finitely presented infinite structures, as well as a systematic approach to the effective evaluation of logical formulae.

References (140)

  1. K. Aehlig, J. G. de Miranda, and C.-H. L. Ong. Safety is not a restriction at level 2 for string languages. In FoSSaCS, pages 490-504, 2005.
  2. J.-P. Allouche and J. Shallit. Automatic Sequences, Theory, Applications, Generalizations. Cambridge University Press, 2003.
  3. J.-P. Allouche and J. O. Shallit. The Ubiquitous Prouhet-Thue-Morse Sequence. In C. Ding, T. Helleseth, and H. Niederreiter, editors, Sequences and Their Applications: Proceedings of SETA '98, pages 1-16. Springer- Verlag, 1999.
  4. V. Bárány. A hierarchy of automatic ω-words having a decidable MSO theory. Journées Montoises '06, Rennes, 2006.
  5. V. Bárány. Invariants of automatic presentations and semi-synchronous transductions. In STACS '06, volume 3884 of LNCS, pages 289-300, 2006.
  6. V. Bárány. Automatic Presentations of Infinite Structures. Phd thesis, RWTH Aachen University, 2007.
  7. V. Bárány. A hierarchy of automatic ω-words having a decidable MSO theory. R.A.I.R.O. Theoretical Informatics and Applications, 42:417-450, 2008.
  8. V. Bárány. Semi-synchronous transductions. Acta Informatica, 46(1):29- 42, 2009.
  9. V. Bárány, L. Kaiser, and A. Rabinovich. Eliminating cardinality quanti- fiers from MLO. Manuscript, 2007.
  10. V. Bárány, Ch. Löding, and O. Serre. Regularity problems for visibly pushdown languages. In STACS '06, volume 3884 of LNCS, pages 420- 431, 2006.
  11. K. Barthelmann. On equational simple graphs. Tech. Rep. 9, Universität Mainz, Institute für Informatik, 1997.
  12. K. Barthelmann. When can an equational simple graph be generated by hyperedge replacement? In MFCS, pages 543-552, 1998.
  13. M.-P. Béal and D. Perrin. Symbolic Dynamics and Finite Automata. In A. Salomaa and G. Rosenberg, editors, Handbook of Formal Languages, Vol. 2, pages 463-503. Springer Verlag, 1997.
  14. M. Benedikt and L. Libkin. Tree extension algebras: logics, automata, and query languages. In Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science (LICS), pages 203-212, 2002.
  15. M. Benedikt, L. Libkin, Th. Schwentick, and L. Segoufin. A model- theoretic approach to regular string relations. In Joseph Halpern, editor, LICS 2001, pages 431-440. IEEE Computer Society, June 2001.
  16. M. Benedikt, L. Libkin, Th. Schwentick, and L. Segoufin. Definable rela- tions and first-order query languages over strings. J. ACM, 50(5):694-751, 2003.
  17. D. Berwanger and A. Blumensath. The monadic theory of tree-like struc- tures.
  18. In E. Grädel, W. Thomas, and T. Wilke, editors, Automata, Logics, and Infinite Games, number 2500 in LNCS, chapter 16, pages 285-301. Springer Verlag, 2002.
  19. A. Bès. Undecidable extensions of Büchi arithmetic Cobham-Semënov theorem. Journal of Symbolic Logic, 62(4):1280-1296, 1997.
  20. A. Bés. An Extension of the Cobham-Semënov Theorem. J. of Symb. Logic, 65(1):201-211, 2000.
  21. A. Blumensath. Automatic Structures. Diploma thesis, RWTH-Aachen, 1999.
  22. A. Blumensath. Prefix-Recognisable Graphs and Monadic Second-Order Logic. Technical report AIB-2001-06, RWTH Aachen, 2001.
  23. A. Blumensath. Axiomatising Tree-interpretable Structures. In STACS, volume 2285 of LNCS, pages 596-607. Springer-Verlag, 2002.
  24. A. Blumensath, Th. Colcombet, and Ch. Löding. Logical theories and compatible operations. In J. Flum, E. Grädel, and T. Wilke, editors, Logic and Automata: History and Perspectives, Texts in Logic and Games, pages 73-106. Amsterdam University Press, 2007.
  25. A. Blumensath and E. Grädel. Automatic structures. In LICS 2000, pages 51-62. IEEE Computer Society, 2000.
  26. A. Blumensath and E. Grädel. Finite presentations of infinite structures: Automata and interpretations. Theory of Comp. Sys., 37:641 -674, 2004.
  27. V. Bruyère, G. Hansel, Ch. Michaux, and R. Villemaire. Logic and p- recognizable sets of integers. Bull. Belg. Math. Soc., 1:191 -238, 1994.
  28. J. R. Büchi. Weak second-order arithmetic and finite automata. Zeit. Math. Logih Grund. Math., 6:66-92, 1960.
  29. A. J. Cain, E. F. Robertson, and N. Ruskuc. Subsemigroups of groups: presentations, malcev presentations, and automatic structures. Journal of Group Theory, 9(3):397-426, 2006.
  30. C. M. Campbell, E. F. Robertson, N. Ruskuc, and R. M. Thomas. Auto- matic semigroups. Theor. Comput. Sci., 250(1-2):365-391, (2001).
  31. C. M. Campbell, E. F. Robertson, N. Ruskuc, and R. M. Thomas. Au- tomatic completely-simple semigroups. Acta Math. Hungar., 96:201-215, 2002.
  32. J.W. Cannon, D.B.A. Epstein, D.F. Holt, S.V.F. Levy, M.S. Paterson, and W.P. Thurston. Word processing in groups. Jones and Barlett Publ., Boston, MA, 1992.
  33. A. Carayol. Regular sets of higher-order pushdown stacks. In Proceedings of Mathematical Foundations of Computer Science (MFCS 2005), volume 3618 of LNCS, pages 168-179, 2005.
  34. A. Carayol and Th. Colcombet. On equivalent representations of infinite structures. In ICALP, volume 2719 of pages 599-610. Springer, 2003.
  35. A. Carayol and A. Meyer. Linearly bounded infinite graphs. In MFCS, vol- ume 3618 of Lecture Notes in Computer Science, pages 180-191. Springer, 2005.
  36. A. Carayol and A. Meyer. Context-Sensitive Languages, Rational Graphs and Determinism. Logical Methods in Computer Science, 2(2), 2006.
  37. A. Carayol and C. Morvan. On rational trees. In Z. Ésik, editor, CSL 06, volume 4207 of LNCS, pages 225-239, 2006.
  38. A. Carayol and S. Wöhrle. The Caucal hierarchy of infinite graphs in terms of logic and higher-order pushdown automata. In FSTTCS, volume 2914 of LNCS, pages 112-123. Springer, 2003.
  39. O. Carton and W. Thomas. The monadic theory of morphic infinite words and generalizations. Information and Computation, 176(1):51-65, 2002.
  40. A. Caryol and Ch. Löding. MSO on the Infinite Binary Tree: Choice and Order. In CSL, volume 4646 of LNCS, pages 161-176, 2007.
  41. D. Caucal. Monadic theory of term rewritings. In LICS, pages 266-273. IEEE Computer Society, 1992.
  42. D. Caucal. On the regular structure of prefix rewriting. Theor. Comput. Sci., 106(1):61-86, 1992.
  43. D. Caucal. On infinite transition graphs having a decidable monadic the- ory. In ICALP'96, volume 1099 of LNCS, pages 194-205, 1996.
  44. D. Caucal. On infinite terms having a decidable monadic theory. In MFCS, pages 165-176, 2002.
  45. D. Caucal. Deterministic graph grammars. In J. Flum, E. Grädel, and T. Wilke, editors, Logic and Automata: History and Perspectives, Texts in Logic and Games, pages 169-250. Amsterdam University Press, 2007.
  46. D. Cenzer and J.B. Remmel. Complexity-theoretic model theory and al- gebra. In Handbook of Recursive Mathematics, Vol. 1, volume 138 of Stud- ies in Logic and the Foundations of Mathematics, pages 381-513. North- Holland, Amsterdam, 1998.
  47. Ch. Choffrut. A short introduction to automatic group theory, 2002.
  48. T. Colcombet and C. Löding. Transforming structures by set interpreta- tions. Logical Methods in Computer Science, 3(2), 2007.
  49. Th. Colcombet. On families of graphs having a decidable first order the- ory with reachability. In ICALP, volume 2380 of LNCS, pages 98-109. Springer, 2002.
  50. Th. Colcombet. Equational presentations of tree-automatic structures. In Workshop on Automata, Structures and Logic, Auckland, NZ, 2004.
  51. Th. Colcombet. Propriétés et représentation de structures infinies. Thèse de doctorat, Université Rennes I, 2004.
  52. Th. Colcombet. A combinatorial theorem for trees. In ICALP, volume 4596 of LNCS, pages 901-912. Springer, 2007.
  53. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and M. Tommasi. Tree Automata Techniques and Applications. In prepa- ration, draft available online at http://www.grappa.univ-lille3.fr/tata/.
  54. B. Courcelle. Graph algebras and monadic second-order logic. Cambridge University Press, in writing...
  55. B. Courcelle. The definability of equational graphs in monadic second- order logic. In ICALP, volume 372 of LNCS, pages 207-221. Springer, 1989.
  56. B. Courcelle. Graph rewriting: An algebraic and logic approach. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics, pages 193-242. Elsevier and MIT Press, 1990.
  57. B. Courcelle. Recursive applicative program schemes. In J. v.d. Leeuwen, editor, Handbook of Theoretical Computer Science, Vol. B, pages 459-492. Elsevier and MIT Press, 1990.
  58. B. Courcelle. The monadic second-order logic of graphs ix: Machines and their behaviours. Theoretical Computer Science, 151(1):125-162, 1995.
  59. B. Courcelle. Finite model theory, universal algebra and graph grammars. In LFCS '97, Proceedings of the 4th International Symposium on Logi- cal Foundations of Computer Science, pages 53-55, London, UK, 1997. Springer-Verlag.
  60. B. Courcelle. The Expression of Graph Properties and Graph Transforma- tions in Monadic Second-Order Logic. In G. Rozenberg, editor, Handbook of graph grammars and computing by graph transformations, vol. 1: Foun- dations, pages 313-400. World Scientific, New-Jersey, London, 1997.
  61. B. Courcelle and J. A. Makowsky. Fusion in Relational Structures and the Verification of Monadic Second-Order Properties. Mathematical Struc- tures in Computer Science, 12(2):203-235, 2002.
  62. B. Courcelle and I. Walukiewicz. Monadic second-order logic, graph cov- erings and unfoldings of transition systems. Annals of Pure and Applied Logic, 92:35-62, 1998.
  63. W. Damm. The IO-and OI hierarchies. Theoretical Computer Science, 20(2):95-208, 1982.
  64. C. Delhommé. Automaticité des ordinaux et des graphes homogènes. Comptes Rendus Mathematique, 339(1):5-10, 2004.
  65. M.J. Dunwoody. The accessibility of finitely presented groups. Inventiones Mathematicae, 81(3):449-457, 1985.
  66. S. Eilenberg, C.C. Elgot, and J.C. Shepherdson. Sets recognised by n-tape automata. Journal of Algebra, 13(4):447-464, 1969.
  67. C. C. Elgot and J. E. Mezei. On relations defined by generalized finite automata. IBM J. Research and Development, 9:47 -68, 1965.
  68. C. C. Elgot and M. O. Rabin. Decidability and undecidability of exten- sions of second (first) order theory of (generalized) successor. Journal of Symbolic Logic, 31(2):169-181, 1966.
  69. C.C. Elgot. Decision problems of finite automata design and related arith- metics. Trans. Amer. Math. Soc., 98:21-51, 1961.
  70. J. Engelfriet. Context-free graph grammars. In Handbook of formal lan- guages, vol. III, pages 125-213. Springer-Verlag New York, Inc., New York, NY, USA, 1997.
  71. Y.L. Ershov, S.S. Goncharov, A. Nerode, and J.B. Remmel, editors. Hand- book of Recursive Mathematics, Vol. 1, volume 138 of Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam, 1998.
  72. B. Farb. Automatic Groups: A Guided Tour. L'Enseignment Math., 38:291-313, 1992.
  73. S. Fratani. Automates à Piles de Piles ... de Piles. Thèse de doctorat, Université Bordeaux 1, 2005.
  74. S. Fratani. Regular sets over tree structures. Rapport Interne 1358-05, LaBRI, Université Paris 7, 2005.
  75. S. Fratani. The theory of successor extended by severals predicates. Journées Montoises '06, Rennes, 2006.
  76. S. Fratani and G. Sénizergues. Iterated pushdown automata and sequences of rational numbers. Ann. Pure Appl. Logic, 141(3):363-411, 2006.
  77. Ch. Frougny. Numeration systems. In M. Lothaire, editor, Algebraic Combinatorics on Words. Cambridge University Press, 2002.
  78. E. Grädel. Simple interpretations among complicated theories. Informa- tion Processing Letters, 35:235-238, 1990.
  79. E. Grädel, P. G. Kolaitis, L. Libkin, M. Marx, J. Spencer, M. Vardi, Y. Venema, and S. Weinstein. Finite Model Theory and Its Applications. Springer-Verlag, 2007.
  80. E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and Infinite Games, volume 2500 of LNCS. Springer-Verlag, 2002.
  81. A. Habel. Hyperedge Replacement: Grammars and Languages, volume 643 of Lecture Notes in Computer Science. Springer, 1992.
  82. M. Hague, A.S. Murawski, C.-H. L. Ong, and O. Serre. Collapsible push- down automata and recursion schemes. In LICS'08. IEEE Computer So- ciety, 2008.
  83. G. Hjorth, B. Khoussainov, A. Montalbán, and A. Nies. From automatic structures to Borel structures. In 23rd Symposium on Logic in Computer Science (LICS), 2008.
  84. M. Hoffmann, D. Kuske, F. Otto, and R. M. Thomas. Some relatives of automatic and hyperbolic groups, 2002.
  85. M. Hoffmann and R. M. Thomas. Notions of automaticity in semigroups. Semigroup Forum, 66:337-367., (2003).
  86. L. Kaiser, S. Rubin, and V. Bárány. Cardinality and counting quantifiers on ω-automatic structures. In STACS '08, volume 08001 of Dagstuhl Seminar Proceedings, pages 385-396. Internationales Begegnungs-und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany, 2008.
  87. B. Khoussainov and M. Minnes. Model theoretic complexity of automatic structures. Annals of Pure and Applied Logic, To appear, 2008.
  88. B. Khoussainov and A. Nerode. Automatic presentations of structures. In LCC '94, volume 960 of LNCS, pages 367-392. Springer-Verlag, 1995.
  89. B. Khoussainov, A. Nies, S. Rubin, and F. Stephan. Automatic structures: Richness and limitations. In LICS'04, pages 44-53, 2004.
  90. B. Khoussainov and S. Rubin. Graphs with automatic presentations over a unary alphabet. Journal of Automata, Languages and Combinatorics, 6(4):467-480, 2001.
  91. B. Khoussainov, S. Rubin, and F. Stephan. Definability and regularity in automatic structures. In STACS '04, volume 2996 of LNCS, pages 440-451, 2004.
  92. B. Khoussainov, S. Rubin, and F. Stephan. Automatic linear orders and trees. ACM Transactions on Computational Logic, 6(4):675-700, 2005.
  93. T. Knapik, D. Niwinski, and P. Urzyczyn. Higher-order pushdown trees are easy. In FoSSaCS'02, volume 2303 of LNCS, pages 205-222, 2002.
  94. D. Kuske. Is cantor's theorem automatic? In LPAR, volume 2850 of LNCS, pages 332-345. Springer, 2003.
  95. D. Kuske and M. Lohrey. First-order and counting theories of ω-automatic structures. In FoSSaCS, pages 322-336, 2006.
  96. D. Kuske and M. Lohrey. Automatic structures of bounded degree revis- ited. arXiv:0810.4998, 2008.
  97. D. Kuske and M. Lohrey. Hamiltonicity of automatic graphs. In FIP TCS 2008, 2008.
  98. H. Lauchli and Ch. Savioz. Monadic Second Order Definable Relations on the Binary Tree. J. of Symbolic Logic, 52(1):219-226, 1987.
  99. S. Lifsches and S. Shelah. Uniformization and skolem functions in the class of trees. Journal of Symbolic Logic, 63:103-127, 1998.
  100. Ch. Löding. Infinite Graphs Generated by Tree Rewriting. Doctoral thesis, RWTH Aachen, 2003.
  101. Christof Löding. Reachability problems on regular ground tree rewriting graphs. Theor. Comp. Sys., 39(2):347-383, 2006.
  102. M. Lohrey. Automatic structures of bounded degree. In LPAR, volume 2850 of LNCS, pages 346-360. Springer, 2003.
  103. M. Lohrey. Decidability and complexity in automatic monoids. In Devel- opments in Language Theory, pages 308-320, 2004.
  104. A. Meyer. Traces of term-automatic graphs. R.A.I.R.O. Theoretical In- formatics and Applications, 42, 2008.
  105. C. Michaux and F. Point. Les ensembles k-reconnaissables sont définissables dans N, +, V k . C. R. Acad. Sci. Paris Sér. I Math., 303(19):939-942, 1986.
  106. Ch. Morvan. Les graphes rationnels. Thèse de doctorat, Université de Rennes 1, Novembre 2001.
  107. Ch. Morvan. Classes of rational graphs. Journées Montoises '06, Rennes, 2006.
  108. Ch. Morvan and Ch. Rispal. Families of automata characterizing context- sensitive languages. Acta Informatica, 41(4-5):293-314, 2005.
  109. Ch. Morvan and C. Stirling. Rational graphs trace context-sensitive lan- guages.
  110. In A. Pultr and J. Sgall, editors, MFCS 01, volume 2136 of LNCS, pages 548-559, 2001.
  111. A. A. Muchnik. The definable criterion for definability in Presburger arithmetic and its applications. Theor. Comput. Sci., 290(3):1433-1444, 2003. D. E. Muller and P. E. Schupp. Context-free languages, groups, the theory of ends, second-order logic, tiling problems, cellular automata, and vector addition systems. Bull. Amer. Math. Soc., 4(3):331-334, 1981.
  112. D. E. Muller and P. E. Schupp. Groups, the theory of ends, and context- free languages. J. Comput. Syst. Sci., 26(3):295-310, 1983.
  113. D. E. Muller and P. E. Schupp. The theory of ends, pushdown automata, and second-order logic. Theor. Comput. Sci., 37:51-75, 1985.
  114. A. A. Nabebin. Expressibility in a restricted second-order arithmetic. Siberian Mathematical Journal, 18(4):588-593, 1977.
  115. A. Nies. Describing groups. Bulletin of Symbolic Logic, 13(3):305-339, 2007.
  116. D. Niwiński. On the cardinality of sets of infinite trees recognizable by finite automata. In Proceedings of the 16th International Symposium on Mathematical Foundations of Computer Science, MFCS'91, volume 520, pages 367-376. Springer, 1991.
  117. G. P. Oliver and R. M. Thomas. Finitely generated groups with automatic presentations. In STACS 2005, volume 3404 of LNCS, pages 693-704. Springer, 2005.
  118. C.-H. L. Ong. On model-checking trees generated by higher-order recur- sion schemes. In LICS, pages 81-90. IEEE Computer Society, 2006.
  119. J.-J. Pansiot. On various classes of infinite words obtained by iterated mappings. In Automata on Infinite Words, pages 188-197, 1984.
  120. A. Rabinovich. On decidability of monadic logic of order over the naturals extended by monadic predicates. Unpublished note, 2005.
  121. A. Rabinovich and W. Thomas. Decidable theories of the ordering of natural numbers with unary predicates. Submitted, 2006.
  122. M. Rigo. Numeration systems on a regular language: Arithmetic op- erations, recognizability and formal power series. Theoretical Computer Science, 269:469, 2001.
  123. M. Rigo and A. Maes. More on generalized automatic sequences. J. of Automata, Languages and Combinatorics, 7(3):351-376, 2002.
  124. Ch. Rispal. The synchronized graphs trace the context-sensistive lan- guages. Electronic Notes in Theor. Comp. Sci., 68(6), 2002.
  125. S. Rubin. Automatic Structures. Phd thesis, University of Auckland, NZ, 2004.
  126. S. Rubin. Automata presenting structures: A survey of the finite-string case. Bulletin of Symbolic Logic, 14(2):169-209, 2008.
  127. A. L. Semenov. Decidability of monadic theories. In Mathematical Foun- dations of Computer Science, Prague, 1984, volume 176 of LNCS, page 162?175. Springer, Berlin, 1984.
  128. G. Sénizergues. Semi-groups acting on context-free graphs. In ICALP '96: Proceedings of the 23rd International Colloquium on Automata, Languages and Programming, pages 206-218, London, UK, 1996. Springer-Verlag.
  129. G. Sénizergues. The bisimulation problem for equational graphs of finite out-degree. SIAM J. Comput., 34(5):1025-1106, 2005.
  130. P. V. Silva and B. Steinberg. A geometric characterization of automatic monoids. The Quarterly Journal of Mathematics, 55:333-356, 2004.
  131. J. Su and S. Grumbach. Finitely representable databases (extended ab- stract. In In Proc. 13th ACM Symp. on Principles of Database Systems, 1994.
  132. A. Szilard, Sh. Yu, K. Zhang, and J. Shallit. Characterizing regular lan- guages with polynomial densities. In MFCS, pages 494-503, 1992.
  133. W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics, pages 133-192. Elsevier and MIT Press, 1990.
  134. W. Thomas. Languages, automata, and logic. In G. Rozenberg and A. Sa- lomaa, editors, Handbook of Formal Languages, volume III, pages 389-455. Springer, New York, 1997.
  135. W. Thomas. Constructing Infinite Graphs with a Decidable MSO-Theory. In MFCS, volume 2747 of LNCS, pages 113-124, 2003.
  136. B.A. Trahtenbrot. Finite automata and the logic of one-place predicates. Russian. Siberian Mathematical Journal, 3:103-131, 1962. English trans- lation: American Mathematical Society Translations, Series 2, 59 (1966), 23-55.
  137. T. Tsankov. The additive group of the rationals is not automatic. manuscript, 2009.
  138. R. Villemaire. The theory of N, +, V k , V l is undecidable. Theoretical Computer Science, 106:337-349, 1992.
  139. I. Walukiewicz. Monadic second-order logic on tree-like structures. The- oretical Computer Science, 275:311-346, 2002.
  140. S. Wöhrle and W. Thomas. Model checking synchronized products of infinite transition systems. In LICS '04, pages 2-11, Washington, DC, USA, 2004. IEEE Computer Society.