Academia.eduAcademia.edu

Outline

Pure computable model theory

1998

Abstract

Let ψ s = ∧Ψ s . If ψ s = ψ s (c 0 , . . . , c n s ), then for every e ∈ {0, . . . , n s }, we set ψ s e = def ∃y e+1 . . . ∃y n s ψ s (c 0 , . . . , c e , y e+1 , . . . , y n s ). For every e ≥ 0, at almost every stage s of the construction, we have a type Ω s e ∈ {Γ n : n ∈ ω} which is a candidate for a principal type realized by ([c 0 ], . . . , [c e ]). We will allow Ω s e to be undefined for finitely many s. Because of the consistency property, if Ω s e is defined then ψ s e (x/c) ∈ Ω s e . The construction will satisfy the following requirements for every e ≥ 0. P 1 e : σ e ∈ Ψ or ¬σ e ∈ Ψ; P 2 e : If σ e ∈ Ψ and σ e = ∃xθ(x), then θ(c) ∈ Ψ for some c ∈ C; Q e : ([c 0 ], . . . , [c e ]) realizes a principal type of T . The priority ranking of the requirements in the decreasing order is: P 1 0 , P 2 0 , Q 0 , . . . , P 1 e , P 2 e , Q e , . . . We attempt to satisfy the requirements in the order of their priority. We say that at stage s > 0: P 1 e requires attention if σ e / ∈ Ψ s-1 and ¬σ e / ∈ Ψ s-1 ; P 2 e requires attention if σ e ∈ Ψ s-1 and σ e = ∃xθ(x) for some θ such that θ(c) / ∈ Ψ s-1 for every c ∈ C; Q e requires attention if Ω s-1 e is undefined. Once satisfied at some stage, requirements P 1 e and P 2 e are never injured again. However, we say that Q e is injured at stage s > 0 if Ω s-1 e

References (212)

  1. C. Ash, J. Knight, M. Manasse, and T. Slaman. Generic copies of count- able structures. Annals of Pure and Applied Logic, 42:195-205, 1989.
  2. C. J. Ash. Recursive labeling systems and stability of recursive structures in hyperarithmetical degrees. Transactions of the American Mathematical Society, 298:497-514, 1986.
  3. C. J. Ash. Stability of recursive structures in arithmetical degrees. Annals of Pure and Applied Logic, 32:113-135, 1986.
  4. C. J. Ash. Categoricity in hyperarithmetical degrees. Annals of Pure and Applied Logic, 34:1-14, 1987.
  5. C. J. Ash. Labeling systems and r.e. structures. Annals of Pure and Applied Logic, 47:99-119, 1990.
  6. C. J. Ash, P. Cholak, and J. F. Knight. Permitting, forcing, and copying of a given recursive relation. Annals of Pure and Applied Logic, 86:219-236, 1997.
  7. C. J. Ash and R. G. Downey. Decidable subspaces and recursively enu- merable subspaces. Journal of Symbolic Logic, 49:1137-1145, 1984.
  8. C. J. Ash and S. S. Goncharov. Strong ∆ 0 2 -categoricity. Algebra and Logic, 24:718-727 (Russian); 471-476 (English translation), 1985.
  9. C. J. Ash, C. G. Jockusch Jr., and J. F. Knight. Jumps of orderings. Transactions of the American Mathematical Society, 319:573-599, 1990.
  10. C. J. Ash and J. F. Knight. Pairs of recursive structures. Annals of Pure and Applied Logic, 46:211-234, 1990.
  11. C. J. Ash and J. F. Knight. Relatively recursive expansions. Fundamenta Mathematicae, 140:137-155, 1992.
  12. C. J. Ash and J. F. Knight. A completeness theorem for certain classes of recursive infinitary formulas. Mathematical Logic Quarterly, 40:173-181, 1994.
  13. C. J. Ash and J. F. Knight. Mixed systems. Journal of Symbolic Logic, 59:1383-1399, 1994.
  14. C. J. Ash and J. F. Knight. Ramified systems. Annals of Pure and Applied Logic, 70:205-221, 1994.
  15. C. J. Ash and J. F. Knight. Possible degrees in recursive copies. Annals of Pure and Applied Logic, 75:215-221, 1995.
  16. C. J. Ash and J. F. Knight. Recursive structures and ershov's hierarchy. Mathematical Logic Quarterly, 42:461-468, 1996.
  17. C. J. Ash and J. F. Knight. Possible degrees in recursive copies ii. Annals of Pure and Applied Logic, 87:151-165, 1997.
  18. C. J. Ash, J. F. Knight, and J. B. Remmel. Quasi-simple relations in copies of a given recursive structure. Annals of Pure and Applied Logic, 86:203-219, 1997.
  19. C. J. Ash, J. F. Knight, and T. A. Slaman. Relatively recursive expansions ii. Fundamenta Mathematicae, 142:147-161, 1993.
  20. C. J. Ash and T. S. Millar. Persistently finite, persistently arithmetic theories. Proceedings of the American Mathematical Society, 89:487-492, 1983.
  21. C. J. Ash and A. Nerode. Intrinsically recursive relations. In J. N. Crossley, editor, Aspects of Effective Algebra, pages 26-41. U.D.A. Book Co., Steel's Creek, Australia, 1981.
  22. J. T. Baldwin. Fundamentals of Stability Theory. Springer-Verlag, New York, Berlin, Heidelberg, 1988.
  23. J. T. Baldwin and A. H. Lachlan. On strongly minimal sets. Journal od Symbolic Logic, 36:79-96, 1971.
  24. E. J. Barker. Intrinsically Σ 0 2 -relations. Monash University, Australia, 1984.
  25. E. J. Barker. Intrinsically Σ 0 α -relations. Annals of Pure and Applied Logic, 39:105-130, 1988.
  26. E. J. Barker. Back and forth relations for reduced abelian p-groups. Annals of Pure and Applied Logic, 75:223-249, 1995.
  27. J. Barwise and J. Schlipf. On recursively saturated models of arithmetic. In D. H. Saracino and V. B. Weispfenning, editors, Model Theory and Alge- bra, number 498 in Lecture Notes in Mathematics, pages 42-55. Springer- Verlag, Berlin, Heidelberg, 1975.
  28. J. Barwise and J. Schlipf. An introduction to recursively saturated and resplendent models. Journal of Symbolic Logic, 41:531-536, 1976.
  29. S. Burris. Decidable model companions. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 35:225-227, 1989.
  30. J. S. Carroll. Some undecidability results for lattices in recursion theory. Pacific Journal of Mathematics, 122:319-331, 1986.
  31. D. Cenzer and J. Remmel. Polynomial-time versus recursive models. An- nals of Pure and Applied Logic, 54:17-58, 1991.
  32. C. C. Chang and H. J. Keisler. Model Theory. Number 73.
  33. J. Chisholm. The complexity of intrinsically r.e. subsets of existentially decidable models. Journal of Symbolic Logic, 55:1213-1232, 1990.
  34. J. Chisholm. Effective model theory vs. recursive model theory. Journal of Symbolic Logic, 55:1168-1191, 1990.
  35. J. A. Chisholm. Effective Model Theory vs. Recursive Model Theory. PhD thesis, University of Wisconsin, Madison, 1988.
  36. P. Cholak, S. Goncharov, B. Khoussainov, and R. A. Shore. Computably categorical structures and expansions by constants. Journal of Symbolic Logic, 64:13-37, 1999.
  37. P. M. Cohn. Universal Algebra. Harper and Row, Publishers, New York, 1965.
  38. J. N. Crossley. Fifty years of computability. Southeast Asian Bulletin of Mathematics, 11:81-99, 1988.
  39. J. N. Crossley, A. B. Manaster, and M. F. Moses. Recursive categoricity and recursive stability. Annals of Pure and Applied Logic, 31:191-204, 1986.
  40. K. J. Davey. Inseparability in recursive copies. Annals of Pure and Applied Logic, 68:1-52, 1994.
  41. A. S. Denisov. Constructive homogeneous extensions. Siberian Math- ematical Journal, 24(6):60-69 (Russian); 879-888 (English translation), 1984.
  42. A. S. Denisov. Every decidable theory has a 0 0 -strongly constructive ho- mogeneous model. In V. N. Remeslennikov, editor, Computable Invariants in the Theory of Algebraic Systems, pages 13-21 (Russian). Akad. Nauk SSSR Sibirsk. Otdel., Vychisl. Tsentr, Novosibirsk, 1987.
  43. A. S. Denisov. Homogeneous 0 0 -elements in structural pre-orders. Algebra and Logic, 28:619-639 (Russian); 405-418 (English translation), 1989.
  44. Kees Doets. Basic Model Theory. Center for the Study of Language and Information, Stanford, California, 1996.
  45. A. S. Downey. Undecidability of l(f ∞ ) and other lattices of r.e. substruc- tures. Annals of Pure and Applied Logic, 32:17-26, 1986.
  46. R. Downey and J. F. Knight. Orderings with α-th jump degree 0 (α) . Proceedings of the American Mathematical Society, 114:545-552, 1992.
  47. R. G. Downey and J. B. Remmel. Automorphisms and recursive struc- tures. Zeitschrift für Mathematische Logik und Grundlagen der Mathe- matik, 33:339-345, 1987.
  48. R. G. Downey and J. B. Remmel. Classification of degree classes associated with r.e. subspaces. Annals of Pure and Applied Logic, 42:105-124, 1989.
  49. B. N. Drobotun. Enumerations of simple models. Siberian Mathematical Journal, 18(5):1002-1014 (Russian); 707-716 (English translation), 1977.
  50. E. F. Eisenberg and J. B. Remmel. Effective isomorphisms of algebraic structures. In G. Metakides, editor, Patras Logic Symposium, number 109 in Studies in Logic and the Foundations in Mathematics, pages 95-122, Amsterdam, 1982. North-Holland.
  51. R. L. Epstein, R. Haas, and R. L. Kramer. Hierarchies of sets and degrees below 0 0 . In J. H. Schmerl M. Lerman and R. I. Soare, editors, Logic Year 1979-1980: University of Connecticut, number 859 in Lecture Notes in Mathematics, pages 32-48. Springer-Verlag, Berlin-Heidelberg-New York, 1981.
  52. Yu. L. Ershov. A hierarchy of sets, i. Algebra and Logic, 7:47-74 (Russian); 25-43 (English translation), 1968.
  53. Yu. L. Ershov. On a hierarchy of sets, ii. Algebra and Logic, 7:15-47 (Russian); 212-232 (English translation), 1968.
  54. Yu. L. Ershov. On a hierarchy of sets, iii. Algebra and Logic, 9:34-51 (Russian); 20-31 (English translation), 1970.
  55. Yu. L. Ershov. Skolem functions and constructive models. Algebra and Logic, 12:644-654 (Russian); 368-373 (English translation), 1973.
  56. Yu. L. Ershov. Theory of Numerations. Nauka, Moscow, 1977 (Russian).
  57. Yu. L. Ershov. Decision Problems and Constructive Models. Nauka, Moscow, 1980 (Russian).
  58. Yu. L. Ershov, I. A. Lavrov, A. D. Taimanov, and M. A. Taitslin. El- ementary theories. Russian Mathematical Surveys, 20:35-105 (English translation), 1965.
  59. S. Feferman. Arithmetically definable models of formalizable arithmetic. Notices of the American Mathematical Society, 5:679-680, 1958.
  60. A. Feldman. Recursion Theory in a Partial Order with Greatest Lower Bound. PhD thesis, University of Wisconsin, Madison, 1985.
  61. A. Feldman. Recursion theory in a lower semilattice. Journal of Symbolic Logic, 57:892-911, 1992.
  62. A. Fröhlich and J. C. Shepherdson. On the factorisation of polynomials in a finite number of steps. Mathematische Zeitschrift, 62:331-334, 1955.
  63. A. Fröhlich and J. C. Shepherdson. Effective procedures in field the- ory. Philosophical Transactions of the Royal Society of London (series A), 248:407-432, 1956.
  64. K. Gödel. Über formal unentscheidbare sä tze der principia mathemat- ica und verwandter systeme i. Monatshefte für Mathematik und Physik, 38:173-198, 1931.
  65. S. S. Goncharov. Autostabulity and computable families of constructiviza- tions. Algebra and Logic, 14:647-680 (Russian); 392-408 (English trans- lation), 1975.
  66. S. S. Goncharov. Constructive models of ℵ 1 -categorical theories. Mathe- matical Notes of the Academy of Sciences of USSR, 23, 1978.
  67. S. S. Goncharov. The quantity of nonautoequivalent constructivizations. Algebra and Logic, 16:257-282 (Russian); 169-185 (English translation), 1978.
  68. S. S. Goncharov. Strong constructivizability of homogeneous models. Alge- bra and Logic, 17:363-388 (Russian); 247-263 (English translation), 1978.
  69. S. S. Goncharov. Computable single-valued numerations. Algebra and Logic, 19:507-551 (Russian); 325-326 (English translation), 1980.
  70. S. S. Goncharov. Problem of the number of non-self-equivalent construc- tivizations. Algebra and Logic, 19:621-639 (Russian); 401-414 (English translation), 1980.
  71. S. S. Goncharov. The problem of the number of nonequivalent con- structivizations. Soviet Mathematics-Doklady, 251:271-273 (Russian); 21 (1980) 411-414 (English translation), 1980.
  72. S. S. Goncharov. A totally transcendental decidable theory without constructivizable homogeneous models. Algebra and Logic, 19:137-149 (Russian); 85-93 (English translation), 1980.
  73. S. S. Goncharov. Totally transcendental theory with a nonconstructiviz- able prime model. Siberian Mathematical Journal, 21(1):44-51 (Russian); 32-37 (English translation), 1980.
  74. S. S. Goncharov. Limit equivalent constructivizations. Trudy Inst. Mat. Sibirsk. Otdel. Akad. Nauk SSSR, 2:4-12 (Russian), 1982.
  75. S. S. Goncharov. Morley's problem (abstract). Bulletin of Symbolic Logic, 3:99, 1997.
  76. S. S. Goncharov and B. N. Drobotun. Numerations of saturated and homo- geneous models. Siberian Mathematical Journal, 21(2):25-41 (Russian); 164-176 (English translation), 1980.
  77. S. S. Goncharov and V. D. Dzgoev. Autostability of models. Algebra and Logic, 19:45-58 (Russian); 28-37 (English translation), 1980.
  78. S. S. Goncharov and A. A. Novikov. Examples of nonautostable systems. Siberian Mathematical Journal, 25(4):37-45 (Russian); 538-545 (English translation), 1984.
  79. S. S. Goncharov and A. T. Nurtazin. Constructive models of complete solvable theories. Algebra and Logic, 12:125-142 (Russian); 67-77 (English translation), 1973.
  80. G. Grätzer. Universal Algebra. Springer-Verlag, New York, second edition, 1979.
  81. D. Guichard. Automorphisms of substructure lattices in effective algebra. Annals of Pure and Applied Logic, 25:47-58, 1983.
  82. D. R. Guichard. Automorphisms and Large Submodels in Effective Alge- bra. PhD thesis, University of Wisconsin-Madison, 1982.
  83. V. S. Harizanov. Degree Spectrum of a Recursive relation on a Recursive Structure. PhD thesis, University of Wisconsin-Madison, 1987.
  84. V. S. Harizanov. Some effects of ash-nerode and other decidability con- ditions on degree spectra. Annals of Pure and Applied Logic, 55:51-65, 1991.
  85. V. S. Harizanov. Uncountable degree spectra. Annals of Pure and Applied Logic, 54:255-263, 1991.
  86. V. S. Harizanov. The possible turing degree of the nonzero member in a two-element degree spectrum. Annals of Pure and Applied Logic, 60:1-30, 1993.
  87. V. S. Harizanov. Turing degrees of certain isomorphic images of com- putable relations. Annals of Pure and Applied Logic, 93:103-113, 1998.
  88. L. Harrington. Recursively presentable prime models. Journal of Symbolic Logic, 39:305-309, 1974.
  89. G. Hasenjaeger. Eine bemerkung zu henkin's beweis für die vollständigkeit der prädikatenkalküls der ersten stufe. Journal of Symbolic Logic, 18:42- 48, 1953.
  90. E. Herrmann. On lindenbaum functions of ℵ 0 -categorical theories of finite similarity type. Bulletin del'Académie Polonaise des Sciences, Série de sciences mathématique, astronomiques et physiques, 24:17-21, 1976.
  91. G. R. Hird. Recursive properties of relations on models. Annals of Pure and Applied Logic, 63:241-269, 1993.
  92. Wilfrid Hodges. Model Theory. Cambridge University Press, Cambridge, Great Britain, 1993.
  93. K. R. Hurlburt. Sufficiency conditions for theories with recursive models. Annals of Pure and Applied Logic, 55:305-320, 1992.
  94. C. G. Jockusch Jr. and R. I. Soare. Π 0 1 classes and degrees of theories. Transactions of the American Mathematical Society, 173:33-56, 1972.
  95. C. G. Jockusch Jr. and R. I. Soare. Degrees of members of Π 0 1 classes. Pacific Journal of Mathematics, 40:605-616, 1972.
  96. C. G. Jockusch Jr. and R. I. Soare. Degrees of orderings not isomorphic to recursive linear orderings. Annals of Pure and Applied Logic, 52:39-64, 1991.
  97. C. G. Jockusch Jr. and R. I. Soare. Boolean algebras, stone spaces, and the iterated turing jump. Journal of Symbolic Logic, 59:1121-1138, 1994.
  98. H. Rodgers Jr. Theory of Recursive Functions and Effective Computability. McGrow-Hill Book Company, New York, 1967.
  99. H. J. Keisler. Model Theory for Infinitary Logic. North-Holland, Amster- dam, 1971.
  100. N. G. Khisamiev. On strongly constructive models of a decidable theory. Izvestiya Akad. Nauk Kaz. SSR Ser. Fiz.-Mat., (1):83-84 (Russian), 1974.
  101. B. Khoussainov, A. Nies, and R. A. Shore. Recursive models of theories with few models. Notre Dame Journal of Formal Logic, 38:165-178, 1997.
  102. B. Khoussainov and R. A. Shore. Computable isomorphisms, degree spec- tra of relations, and scott families.
  103. B. M. Khusainov. Strongly ∀-finite theories of unars. Mathematical Notes of the Academy of Sciences of the USSR, 41(2):265-271 (Russian); 151- 154 (English translation), 1987.
  104. B. M. Khusainov. Algorithmic degrees of unars. Algebra and Logic, 27:479- 494 (Russian); 301-312 (English translation), 1988.
  105. B. M. Khusainov. Algorithmic dimensions of homomorphic images of mod- els. Algebra and Logic, 31:317-331 (Russian); 195-203 (English transla- tion), 1992.
  106. B. M. Khusainov and R. Dadajanov. Algorithmic stability of models. In R. A. Shore J. N. Crossley, J. B. Remmel and M. E. Sweedler, editors, Logical Methods, pages 438-466. Birkhäuser, Boston, 1993.
  107. H. A. Kierstead and J. B. Remmel. Indiscernibles and decidable models. Journal of Symbolic Logic, 48:21-32, 1983.
  108. H. A. Kierstead and J. B. Remmel. Degrees of indiscernibles in decidable models. Transactions of the American Mathematical Society, 289:41-57, 1985.
  109. S. C. Kleene. Introduction to Metamathematics. North-Holland, Amster- dam, 1952.
  110. J. Knight, A. H. Lachlan, and R. I. Soare. Two theorems on degrees of models of true arithmetic. Journal of Symbolic Logic, 49:425-436, 1984.
  111. J. F. Knight. Degrees of types and independent sequences. Journal of Symbolic Logic, 48:1074-1081, 1983.
  112. J. F. Knight. Degrees coded in jumps of orderings. Journal of Symbolic Logic, 51:1034-1042, 1986.
  113. J. F. Knight. Effective construction of models. In J. B. Paris, A. J. Wilkie, and G. M. Wilmers, editors, Logic Colloquium '84, number 120 in Studies in Logic and the Foundations in Mathematics, pages 105-119. North-Holland, Amsterdam, 1986.
  114. J. F. Knight. Saturation of homogeneous resplendent models. Journal of Symbolic Logic, 51:222-224, 1986.
  115. J. F. Knight. Degrees of models with prescribed scott set. In J. T. Baldwin, editor, Classification Theory, number 1292 in Lecture Notes in Mathemat- ics, pages 182-191. Springer-Verlag, Berlin, Heidelberg, 1987.
  116. J. F. Knight. Constructions by transfinitely many workers. Annals of Pure and Applied Logic, 48:237-259, 1990.
  117. J. F. Knight. A metatheorem for constructions by finitely many workers. Journal of Symbolic Logic, 55:787-804, 1990.
  118. J. F. Knight and M. Nadel. Expansions of models and turing degrees. Journal of Symbolic Logic, 47:587-604, 1982.
  119. K. Zh. Kudaibergenov. A theory with two strongly constructivizable mod- els. Algebra and Logic, 18:176-185 (Russian); 111-117 (English transla- tion), 1979.
  120. O. V. Kudinov. An autostable 1-decidable model without a computable scott family of -formulas. Algebra and Logic, 35:458-467 (Russian); 255- 260 (English translation), 1996.
  121. D. Lascar. Stabilité en Théorie des Modèles. Institut de Mathématique Pure et Appliquée, Université Catholique de Louvain-la-Neuve, Belgium, 1986.
  122. M. Lerman and J. H. Schmerl. Theories with recursive models. Journal of Symbolic Logic, 44:59-76, 1979.
  123. L. Lipshitz and M. Nadel. The additive structure of models of arithmetic. Proceedings of the American Mathematical Society, 68:331-336, 1978.
  124. A. Macintyre and D. Marker. Degrees of recursively saturated models. Transactions of the American Mathematical Society, 282:539-554, 1984.
  125. A. I. Mal'cev. Constructive algebras. i. Uspekhi Matematicheskih Nauk, pages 3-60 (Russian), 1961.
  126. A. I. Mal'cev. Algebraic Systems. Nauka, Moscow, 1970. (in Russian).
  127. M. S. Manasse. Techniques and Counterexamples in Almost Categorical Recursive Model Theory. PhD thesis, University of Wisconsin-Madison, 1982.
  128. D. Marker. Degrees of models of true arithmetic. In J. Stern, editor, Logic Colloquium '81, number 107 in Studies in Logic and the Foundations of Mathematics, pages 233-242. North-Holland, Amsterdam, 1982.
  129. G. Metakides and A. Nerode. Recursion theory and algebra. In J. N. Crossley, editor, Algebra and Logic, number 450 in Lecture Notes in Math- ematics, pages 209-219. Springer-Verlag, Berlin, 1975.
  130. G. Metakides and A. Nerode. Recursively enumerable vector spaces. An- nals of Mathematical Logic, 11:147-171, 1977.
  131. G. Metakides and A. Nerode. Effective content of field theory. Annals of Mathematical Logic, 17:289-320, 1979.
  132. G. Metakides and A. Nerode. Recursion theory on fields and abstract dependence. Journal of Algebra, 65:36-59, 1980.
  133. G. Metakides and A. Nerode. The introduction of non-recursive methods in mathematics. In A. S. Troelstra and D. van Dalen, editors, The L. E. J. Brouwer Centenary Symposium, number 110 in Studies in Logic and the Foundations of Mathematics, pages 319-335. North-Holland, Amsterdam, 1982.
  134. T. Millar. Homogeneous models and decidability. Pacific Journal of Math- ematics, 91:407-418, 1980.
  135. T. Millar. Counter-examples via model completions. In J. H. Schmerl M. Lerman and R. I. Soare, editors, Logic Year 1979-80, number 859 in Lecture Notes in Mathematics, pages 215-229. Springer-Verlag, Berlin, Heidelberg, New York, 1981.
  136. T. Millar. Vaught's theorem recursively revisited. Journal of Symbolic Logic, 46:397-411, 1981.
  137. T. Millar. Omitting types, type spectrums, and decidability. Journal of Symbolic Logic, 48:171-181, 1983.
  138. T. Millar. Persistently finite theories with hyperarithmetic models. Trans- actions of the American Mathematical Society, 278:91-99, 1983.
  139. T. Millar. Decidability and the number of countable models. Annals of Pure and Applied Logic, 27:137-153, 1984.
  140. T. Millar. Decidable ehrenfeucht theories. In A. Nerode and R. Shore, editors, Recursion Theory, number 42 in Proceedings of Symposia in Pure Mathematics of the American Mathematical Society, pages 311-321. American Mathematical Society, Providence, 1985.
  141. T. Millar. Bad models in nice neighborhoods. Journal of Symbolic Logic, 51:1043-1055, 1986.
  142. T. Millar. Prime models and almost decidability. Journal of Symbolic Logic, 51:412-420, 1986.
  143. T. Millar. Homogeneous models and almost decidability. Journal of the Australian Mathematical Society (Series A), 46:343-355, 1989.
  144. T. S. Millar. The Theory of Recursively Presented Models. PhD thesis, Cornell University, 1976.
  145. T. S. Millar. Foundations of recursive model theory. Annals of Mathe- matical Logic, 13:45-72, 1978.
  146. T. S. Millar. A complete, decidable theory with two decidable models. Journal of Symbolic Logic, 44:307-312, 1979.
  147. T. S. Millar. Type structure complexity and decidability. Transactions of the American Mathematical Society, 271:73-81, 1982.
  148. T. S. Millar. Recursive categoricity and persistence. Journal of Symbolic Logic, 51:430-434, 1986.
  149. T. S. Millar. Abstract recursive model theory. In E. Griffor, editor, Hand- book of Recursion Theory. North-Holland, to appear.
  150. J. D. Monk. Mathematical Logic. Springer-Verlag.
  151. M. Morley. Decidable models. Israel Journal of Mathematics, 25:233-240, 1976.
  152. A. S. Morozov. A decidable countably categorical model without nontrivial recursive automorphisms. Siberian Mathematical Journal, 30(2):221-224 (Russian); 346-348 (English translation), 1989.
  153. A. S. Morozov. Functional trees and automorphisms of models. Algebra and Logic, 32:54-72 (Russian); 28-38 (English translation), 1993.
  154. A. S. Morozov. Automorphism groups of decidable models. Algebra and Logic, 34:437-447 (Russian); 242-248 (English translation), 1995.
  155. M. Moses. Recursive properties of isomorphism types. Journal of the Australian Mathematical Society (Series A), 34:269-286, 1983.
  156. M. Moses. Relations intrinsically recursive in linear orders. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 32:467-472, 1986.
  157. A. Nerode and J. Remmel. A survey of lattices of r.e. substructures. In A. Nerode and R. Shore, editors, Recursion Theory, number 42 in Pro- ceedings of Symposia in Pure Mathematics of the American Mathemati- cal Society, pages 323-375. American Mathematical Society, Providence, 1985.
  158. A. Nerode and J. B. Remmel. Complexity-theoretic algebra ii: Boolean algebras. Annals of Pure and Applied Logic, 44:71-99, 1989.
  159. A. Nerode and R. L. Smith. The undecidability of the lattice of recursively enumerable subspaces. In N. C. A. da Costa A. I. Arruda and A. M. Sette, editors, Proceedings of the Third Brazilian Conference on Mathematical Logic, pages 245-252. Sociedade Brasileira de Lógica, 1980.
  160. A. T. Nurtazin. Strong and weak constructivizations and computable fam- ilies. Algebra and Logic, 13:311-323 (Russian); 177-184 (English transla- tion), 1974.
  161. P. Odifreddi. Classical Recursion Theory. North-Holland, Amsterdam, 1989.
  162. S. P. Odintsov. Intrinsically recursively enumerable subalgebras of a re- cursive boolean algebra. Algebra and Logic, 31:38-46 (Russian); 24-29 (English translation), 1992.
  163. M. G. Peretyat'kin. Strongly constructive models and numerations of boolean algebra of recursive sets. Algebra and Logic, 10:535-557 (Russian); 332-345 (English translation), 1971.
  164. M. G. Peretyat'kin. Every recursively enumerable extension of a theory of linear order has a constructive model. Algebra and Logic, 12:211-219 (Russian); 120-124 (English translation), 1973.
  165. M. G. Peretyat'kin. On complete theories with a finite number of denumer- able models. Algebra and Logic, 12:550-576 (Russian); 310-326 (English translation), 1973.
  166. M. G. Peretyat'kin. Strongly constructive model without elementary sub- models and extensions. Algebra and Logic, 12:312-322 (Russian); 173-183 (English translation), 1973.
  167. M. G. Peretyat'kin. Criterion for strong constructivizability of a homoge- neous model. Algebra and Logic, 17:436-454 (Russian); 290-301 (English translation), 1978.
  168. M. G. Peretyat'kin. Example of an ω 0 -categorical complete finitely ax- iomatizable theory. Algebra and Logic, 19:314-347 (Russian); 202-229 (English translation), 1980.
  169. M. G. Peretyat'kin. Turing machine computations in finitely axiomatiz- able theories. Algebra and Logic, 21:410-441 (Russian); 272-295 (English translation), 1982.
  170. M. G. Peretyat'kin. Similarity of the properties of recursively enumerable and finitely axiomatizable theories. Soviet Mathematics-Doklady, 308:788- 791 (Russian); 372-375 (English translation), 1989.
  171. M. G. Peretyat'kin. Finitely axiomatizable theories. In B. Silver, editor, Nine Papers from the International Congress of Mathematicians 1986, number 147 in American Mathematical Society Translations, Series 2, pages 11-19. American Mathematical Society, Providence, 1990.
  172. M. G. Peretyat'kin. Analogues of rice's theorem for semantic classes of propositions. Algebra and Logic, 30:517-539 (Russian); 332-348 (English translation), 1991.
  173. M. G. Peretyat'kin. Semantically universal classes of models. Algebra and Logic, 30:414-431 (Russian); 271-282 (English translation), 1991.
  174. M. G. Peretyat'kin. Semantic universality of theories over a superlist. Algebra and Logic, 31:47-73 (Russian); 30-48 (English translation), 1992.
  175. A. Pillay. An Introduction to Stability Theory. Oxford University Press, Oxford, 1983.
  176. M. B. Pour-El and J. I. Richards. Computability in Analysis and Physics. Springer-Verlag, Berlin, Heidelberg, New York, 1989.
  177. M. O. Rabin. Recursive unsolvability of group theoretic problems. Annals of Mathematics, 67:172-194, 1958.
  178. M. O. Rabin. Computable algebra, general theory and theory of com- putable fields. Transactions of the American Mathematical Society, 95:341-360, 1960.
  179. R. C. Reed. A Decidable Ehrenfeucht Theory with Exactly Two Hyper- arithmetic Models. PhD thesis, University of Wisconsin-Madison, 1986.
  180. R. C. Reed. A decidable ehrenfeucht theory with exactly two hyperarith- metic models. Annals of Pure and Applied Logic, 53:135-168, 1991.
  181. J. B. Remmel. Effective structures not contained in recursively enumerable structures. In J. N. Crossley, editor, Aspects of Effective Algebra, pages 26-41. U.D.A. Book Co., Steel's Creek, Australia, 1981.
  182. J. B. Remmel. Recursive isomorphism types of recursive boolean algebras. Journal of Symbolic Logic, 46:572-594, 1981.
  183. J. B. Remmel. Recursively categorical linear orderings. Proceedings of the American Mathematical Society, 83:387-391, 1981.
  184. J. B. Remmel and J. N. Crossley. The work of anil nerode: A retrospective. In R. A. Shore J. N. Crossley, J. B. Remmel and M. E. Sweedler, editors, Logical Methods, pages 1-91. Birkhäuser, Boston, 1993.
  185. J. P. Ressayre. Boolean models and infinitary first order languages. Annals of Mathematical Logic, 6:41-92, 1973.
  186. J. L. Richter. Degrees of structures. Journal of Symbolic Logic, 46:723- 731, 1981.
  187. L. J. Richter. Degrees of Unsolvability of Models. PhD thesis, University of Illinois at Urbana-Champaign, 1977.
  188. G. E. Sacks. Saturated Model Theory. W. A. Benjamin, Inc., Reading, Massachusetts, 1972.
  189. G. E. Sacks. Higher Recursion Theory. Springer-Verlag, Berlin, Heidel- berg, 1990.
  190. J. S. Schlipf. Toward model theory through recursive saturation. Journal of Symbolic Logic, 43:183-206, 1978.
  191. J. H. Schmerl. A decidable ℵ 0 -categorical theory with a non-recursive Ryll-Nardzewski function. Fundamenta Mathematicae, 98:121-125, 1978.
  192. D. Scott. Algebra of sets binumerable in complete extensions of arithmetic. In J. C. E. Dekker, editor, Recursive Function Theory, number 5 in Pro- ceedings of Symposia in Pure Mathematics of the American Mathemati- cal Society, pages 117-121. American Mathematical Society, Providence, 1962.
  193. D. Scott and S. Tennenbaum. On the degrees of the complete extensions of arithmetic. Notices of the American Mathematical Society, 7:242-243, 1960.
  194. J. R. Shoenfield. Degrees of models. Journal of Symbolic Logic, 25:233- 237, 1960.
  195. T. A. Slaman. Relative to any nonrecursive set. to appear.
  196. R. I. Soare. Recursively Enumerable Sets and Degrees. Springer-Verlag, Berlin, Heidelberg, New York, 1987.
  197. I. N. Soskov. Intrinsically hyperarithmetical sets. Mathematical Logic Quarterly, 42:469-480, 1996.
  198. I. N. Soskov. Intrinsically π 1 1 relations. Mathematical Logic Quarterly, 42:109-126, 1996.
  199. S. Tennenbaum. Non-archimedean models for arithmetic. Notices of the American Mathematical Society, 6:270, 1959.
  200. D. A. Tusupov. Numerations of homogeneous models of decidable com- plete theories with a computable family of types. In V. N. Remeslennikov, editor, Theory of Algorithms and Its Applications, Computable Systems, volume 129.
  201. B. L. van der Waerden. Eine bemerkung über die unzerlegbarkeit von polynomen. Mathematische Annalen, 102:738-739, 1930.
  202. B. L. van der Waerden. Moderne Algebra I. Julius Springer, Berlin, first edition, 1930.
  203. B. L. van der Waerden. Algebra I. Springer-Verlag, Berlin, Heidelberg, New York, seventh edition, 1991. translated by F. Blum and J. R. Schu- lenberger.
  204. R. L. Vaught. Sentences true in all constructive models. Journal of Sym- bolic Logic, 25:39-53, 1960.
  205. M. C. Venning. Type Structures of ℵ 0 -Categorical Theories. PhD thesis, Cornell University, 1976.
  206. Yu. G. Ventsov. A family of recursively enumerable sets with finite classes of non-equivalent injective computable enumerations. Logical Methods in Programming, 120:105-142 (Russian), 1987.
  207. Yu. G. Ventsov. Nonuniform autostability of models. Algebra and Logic, 26:684-714 (Russian); 422-440 (English translation), 1987.
  208. Yu. G. Ventsov. On the algorithmic dimension of models. Soviet Mathematics-Doklady, 305:21-24 (Russian); 39 (1989) 237-239 (English translation), 1989.
  209. Yu. G. Ventsov. Computable classes of constructivizations for models with infinite algorithmic dimension. Algebra and Logic, 33:37-75 (Russian); 22- 45 (English translation), 1994.
  210. Yu. G. Ventsov. Constructive models of regularly infinite algorithmic di- mension. Algebra and Logic, 33:135-146 (Russian); 79-84 (English trans- lation), 1994.
  211. A. D. Vlah. Hyperarithmetical relations in expansions of recursive struc- tures. Annals of Pure and Applied Logic, 66, 1994.
  212. S. Wehner. Enumerations, computable structures and turing degrees. to appear.