Academia.eduAcademia.edu

Outline

Unifying Themes in Finite Model Theory

2007, Texts in Theoretical Computer Science an EATCS Series

https://doi.org/10.1007/3-540-68804-8_1

Abstract

One of the fundamental insights of mathematical logic is that our understanding of mathematical phenomena is enriched by elevating the languages we use to describe mathematical structures to objects of explicit study. If mathematics is the science of pattern, then the media through which we discern patterns, as well as the structures in which we discern them, command our attention. It is this aspect of logic which is most prominent in model theory, "the branch of mathematical logic which deals with the relation between a formal language and its interpretations" . No wonder, then, that mathematical logic, in general, and finite model theory, the specialization of model theory to finite structures, in particular, should find manifold applications in computer science: from specifying programs to querying databases, computer science is rife with phenomena whose understanding requires close attention to the interaction between language and structure.

References (70)

  1. S. Abiteboul and V. Vianu. Datalog extensions for database queries and updates. Journal of Computer and System Sciences, 43:62-124, 1991.
  2. S. Abiteboul and V. Vianu. Generic computation and its complexity. In STOC, pages 209-219. ACM, 1991.
  3. J. W. Addison. Tarski's theory of definability: common themes in descriptive set theory, recursive function theory, classical pure logic, and finite-universe logic. Annals of Pure and Applied Logic, 126:77-92, 2004.
  4. M. Ajtai and R. Fagin. Reachability is harder for directed than for undirected finite graphs. Journal of Symbolic Logic, 55:113-150, 1990.
  5. V. Arvind and J. Torán. Isomorphism testing: Perspective and open problems. Bulletin of the EATCS, 86:66-84, 2005.
  6. A. Atserias, A. Dawar, and M. Grohe. Preservation under extensions on well-behaved finite structures. In L. Caires, G. F. Italiano, L. Monteiro, C. Palamidessi, and M. Yung, editors, ICALP, Lecture Notes in Computer Sci- ence, volume 3580, pages 1437-1449. Springer, 2005.
  7. J. Baldwin and M. Benedikt. Stability theory, permutations of indiscernibles, and embedded finite models. Transactions of the American Mathematical Soci- ety, 352:4937-4969, 2000.
  8. J. Baldwin and S. Shelah. Randomness and semi-genericity. Transactions of the American Mathematical Society, 349:1359-1376, 1997.
  9. J. Barwise. On Moschovakis closure ordinals. Journal of Symbolic Logic, 42: 292-296, 1977.
  10. M. Benedikt, G. Dong, L. Libkin, and L. Wong. Relational expressive power of constraint query languages. Journal of the ACM, 45(1):1-34, 1998.
  11. J. van Benthem. Modal Correspondence Theory. PhD thesis, Mathematisch Instituut & Instituut voor Grondslagenonderzoek, University of Amsterdam, 1976.
  12. J. van Benthem. Modal Logic and Classical Logic. Bibliopolis, 1983.
  13. P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge University Press, 2002.
  14. A. Blass, Y. Gurevich, and D. Kozen. A zero-one law for logic with a fixed-point operator. Information and Control, 67(1-3):70-90, 1985.
  15. L. Blum, M. Shub, and S. Smale. On a theory of computation over the real numbers; np completeness, recursive functions and universal machines (extended abstract). In FOCS, pages 387-397. IEEE Computer Society, 1988.
  16. J. R. Büchi. Weak second-order arithmetic and finite automata. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 6:66-92, 1960.
  17. A. A. Bulatov. A dichotomy theorem for constraints on a three-element set. In FOCS, pages 649-658. IEEE Computer Society, 2002.
  18. J-y. Cai, M. Fürer, and N. Immerman. An optimal lower bound on the number of variables for graph identification. In FOCS, pages 612-617. IEEE Computer Society, 1989.
  19. A. Chandra and D. Harel. Structure and complexity of relational queries. Jour- nal of Computer and System Sciences, 25:99-128, 1982.
  20. A. K. Chandra. Theory of database queries. In PODS, pages 1-9. ACM, 1988.
  21. C. C. Chang and H. J. Keisler. Model Theory. North-Holland, 1990.
  22. A. Dawar. Finite models and finitely many variables. In D. Niwinski and R. Maron, editors, Logic, Algebra and Computer Science, Banach Center Pub- lications, volume 46, pages 93-117. Polish Academy of Sciences, 1999.
  23. A. Dawar. Generalized quantifiers and logical reducibilities. Journal of Logic and Computation, 5(2):213-226, 1995.
  24. P. Erdös and A. Rényi. On the evolution of random graphs. Public Mathematical Institute of Hungary Academy of Sciences, 5:17-61, 1960.
  25. R. Fagin. Generalized first-order spectra and polynomial-time recognizable sets. In R. M. Karp, editor, Complexity of Computation, SIAM-AMS Proceedings, volume 7, pages 43-73, 1974.
  26. R. Fagin. Probabilities on finite models. Journal of Symbolic Logic, 41(1):50-58, March 1976.
  27. T. Feder and M. Y. Vardi. The computational structure of monotone monadic SNP and constraint satisfaction: a study through datalog and group theory. SIAM Journal on Computing, 28:57-104, 1998.
  28. Y. Glebskii, D. Kogan, M. Liogon'kii, and V. Talanov. Range and degree of realizability of formulas in the restricted predicate calculus. Cybernetics, 5:142-154, 1969.
  29. E. Grädel. Why are modal logics so robustly decidable? Bulletin of the EATCS, 68:90-103, 1999.
  30. E. Grädel and Y. Gurevich. Metafinite model theory. Information and Compu- tation, 140:26-81, 1998.
  31. E. Grädel and G. L. McColm. Hierarchies in transitive closure logic, stratified datalog and infinitary logic. Annals of Pure and Applied Logic, 77:166-199, 1996.
  32. E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and Infi- nite Games: A Guide to Current Research, Lecture Notes in Computer Science, volume 2500, Springer, 2002.
  33. M. Grohe. Finite variable logics in descriptive complexity theory. Bulletin of Symbolic Logic, 4:345-398, 1998.
  34. M. Grohe. Fixed-point logics on planar graphs. In LICS, pages 6-15. IEEE Computer Society, 1998.
  35. M. Grohe. Isomorphism testing for embeddable graphs through definability. In STOC, pages 63-72. ACM, 2000.
  36. M. Grohe and J. Mariño. Definability and descriptive complexity on databases of bounded tree-width. In C. Beeri and P. Buneman, editors, ICDT, Lecture Notes in Computer Science, volume 1540, pages 70-82. Springer, 1999.
  37. S. Grumbach and J. Su. Queries with arithmetical constraints. Theoretical Computer Science, 173(1):151-181, 1997.
  38. Y. Gurevich. Logic and the challenge of computer science. In E. Börger, editor, Current Trends in Theoretical Computer Science, pages 1-57. Computer Science Press, 1988.
  39. Y. Gurevich and S. Shelah. Fixed-point extensions of first-order logic. Annals of Pure and Applied Logic, 32:265-180, 1986.
  40. P. Hell and J. Nešetřil. On the complexity of H-coloring. Journal of Combina- torial Theory-Series B, 48:92-110, 1990.
  41. L. Hella, Ph. G. Kolaitis, and K. Luosto. Almost everywhere equivalence of logics in finite model theory. The Bulletin of Symbolic Logic, 2(4):422-443, 1996.
  42. M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concur- rency. Journal of the ACM, 32(1):137-161, 1985.
  43. N. Immerman. Relational queries computable in polynomial time. Information and Control, 68:86-104, 1986.
  44. N. Immerman and D. Kozen. Definability with bounded number of bound variables. Information and Computation, 83:121-139, 1989.
  45. P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz. Constraint query languages. In PODS, pages 299-313. ACM, 1990.
  46. C. Karp. Finite quantifier equivalence. In J. W. Addison, L. Henkin, and A. Tarski, editors, The Theory of Models, pages 407-412. North-Holland, 1965.
  47. Ph. G. Kolaitis and M. Y. Vardi. The decision problem for the probabilities of higher-order properties. In STOC, pages 425-435. ACM, 1987.
  48. Ph. G. Kolaitis and M. Y. Vardi. Infinitary logics and 0-1 laws. Information and Computation, 98(2):258-294, 1992.
  49. S. Kreutzer. Expressive equivalence of least and inflationary fixed-point logic. Annals of Pure and Applied Logic, 130(1-3):61-78, 2004.
  50. R. E. Ladner. On the structure of polynomial time reducibility. Journal of the ACM, 22(1):155-171, 1975.
  51. M. C. Laskowski. A simpler axiomatization of the Shelah-Spencer almost sure theories. Israel Journal of Mathematics, to appear.
  52. Y. N. Moschovakis. Descriptive Set Theory. North-Holland, 1980.
  53. A. Nash, J. B. Remmel, and V. Vianu. Ptime queries revisited. In T. Eiter and L. Libkin, editors, ICDT, Lecture Notes in Computer Science, volume 3363, pages 274-288. Springer, 2005.
  54. M. Otto. Bounded Variable Logics and Counting. Springer, 1997.
  55. M. Otto. Bisimulation-invariant ptime and higher-dimensional μ-calculus. The- oretical Computer Science, 224(1-2):237-265, 1999.
  56. M. Otto. Modal and guarded characterisation theorems over finite transition systems. Annals of Pure and Applied Logic, 130:173-205, 2004.
  57. D. Park. Concurrency and automata on infinite sequences. In P. Deussen, editor, Theoretical Computer Science, Lecture Notes in Computer Science, volume 104, pages 167-183. Springer, 1981.
  58. O. Reingold. Undirected st-connectivity in log-space. In H. N. Gabow and R. Fagin, editors, STOC, pages 376-385. ACM, 2005.
  59. E. Rosen. Modal logic over finite structures. Journal of Logic, Language and Information, 6(4):427-439, 1997.
  60. B. Rossman. Existential positive types and preservation under homomorphisms. In LICS, pages 467-476. IEEE Computer Society, 2005.
  61. T. J. Schaefer. The complexity of satisfiability problems. In STOC, pages 216-226. ACM, 1978.
  62. S. Shelah and J. Spencer. Zero-one laws for sparse random graphs. Journal of the American Mathematical Society, 1:97-115, 1988.
  63. H. Straubing. Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser, 1994.
  64. W. Tait. A counterexample to a conjecture of Scott and Suppes. Journal of Symbolic Logic, 24(1):15-16, 1959.
  65. A. Tarski. The concept of truth in formalized languages. In Logic, Semantics, Metamathematics, pages 152-278. Clarendon Press, Oxford, 1956.
  66. L. van den Dries. Tame Topology and o-Minimal Structures. Cambridge Uni- versity Press, 1998.
  67. L. van den Dries. Classical model theory of fields. In D. Haskell, A. Pillay, and C. Steinhorn, editors, Model Theory, Algebra, and Geometry, pages 37-52. Cambridge University Press, 2000.
  68. M. Y. Vardi. The complexity of relational query languages. In STOC, pages 137-146. ACM, 1982.
  69. M. Y. Vardi. Why is modal logic so robustly decidable? In N. Immerman and Ph. G. Kolaitis, editors, Descriptive Complexity and Finite Models, volume 31 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 149-184. American Mathematical Society, 1996.
  70. A. J. Wilkie. Model completeness results for expansions of the ordered field of real numbers by restricted pfaffian functions and the exponential function. Journal of the American Mathematical Society, 9:1051-1094, 1996.