Academia.eduAcademia.edu

Outline

A Geometric characterization of Banach spaces with $p$-Bohr radius

2022

https://doi.org/10.48550/ARXIV.2201.03849

Abstract

For any complex Banach space $X$ and each $p \in [1,\infty)$, we introduce the $p$-Bohr radius of order $N(\in \mathbb{N})$ is $\widetilde{R}_{p,N}(X)$ defined by $$ \widetilde{R}_{p,N}(X)=\sup \left\{r\geq 0: \sum_{k=0}^{N}\norm{x_k}^p r^{pk} \leq \norm{f}^p_{H^{\infty}(\mathbb{D}, X)}\right\}, $$ where $f(z)=\sum_{k=0}^{\infty} x_{k}z^k \in H^{\infty}(\mathbb{D}, X)$. We also introduce the following geometric notion of $p$-uniformly $\mathbb{C}$-convexity of order $N$ for a complex Banach space $X$ for some $N \in \mathbb{N}$. For $p\in [2,\infty)$, a complex Banach space $X$ is called $p$-uniformly $\mathbb{C}$-convex of order $N$ if there exists a constant $\lambda > 0$ such that \begin{align}\label{e-0.1} \left(\norm{x_0}^p + \lambda \norm{x_1}^p + {\lambda}^2 \norm{x_2}^p + \cdots + {\lambda}^N \norm{x_N}^p \right)^{1/p} \leq \max_{\theta \in [0,2\pi)} \norm{x_0 + \sum_{k=1}^{N}e^{i \theta}x_k} \end{align} for all $x_0$, $x_1$,$\dots$, $x_N$ $\in X$. We denote $A_{p,N}(X)$,...

References (28)

  1. M. B. Ahamed, V. Allu and H. Halder, The Bohr Phenomenon for analytic functions on shifted disks, Ann. Fenn. Math. 47 (2022), 103-120.
  2. L. Aizenberg, Multidimensional analogues of Bohr's theorem on power series, Proc. Amer. Math. Soc. 128 (2000), 1147-1155.
  3. L. Aizenberg, A. Aytuna and P. Djakov, Generalization of theorem on Bohr for bases in spaces of holomorphic functions of several complex variables, J. Math. Anal.Appl. 258 (2001), 429-447.
  4. L. Aizenberg, Generalization of results about the Bohr radius for power series, Stud. Math. 180 (2007), 161-168.
  5. V. Allu and H. Halder, Bohr phenomenon for certain subclasses of Harmonic Mappings, Bull. Sci. Math. 173 (2021), 103053.
  6. V. Allu and H. Halder, Bohr radius for certain classes of starlike and convex univalent functions, J. Math. Anal. Appl. 493 (2021), 124519.
  7. V. Allu and H. Halder, Operator valued analogues of multidimensional Bohr's inequality, Canadian Math. Bull. (2021), To appear.
  8. A. Aytuna and P. Djakov, Bohr property of bases in the space of entire functions and its general- izations, Bull. London Math. Soc. 45(2)(2013), 411-420.
  9. F. Bayart, D. Pellegrino, and J. B. Seoane-Sepúlveda, The Bohr radius of the n-dimensional polydisk is equivalent to (log n)/n, Adv. Math. 264 (2014), 726-746.
  10. C. Bénéteau, A. Dahlner and D. Khavinson, Remarks on the Bohr phenomenon, Comput. Methods Funct. Theory 4(1) (2004), 1-19.
  11. B. Bhowmik and N. Das, A characterization of Banach spaces with nonzero Bohr radius, Arch. Math. 116 (2021), 551-558.
  12. O. Blasco and M. Pavlovic, Complex convexity and vector-valued Littlewood-Paley inequalities, Bull. London Math. Soc. 35 (2003), 749-758.
  13. O. Blasco, The Bohr radius of a Banach space, In Vector measures, integration and related topics, 5964, Oper. Theory Adv. Appl., 201, Birkhäuser Verlag, Basel, 2010.
  14. O. Blasco, The p-Bohr radius of a Banach space, Collect. Math. 68 (2017), 87-100.
  15. H.P. Boas and D. Khavinson, Bohr's power series theorem in several variables, Proc. Amer. Math. Soc. 125 (1997), 2975-2979.
  16. H. Bohr, A theorem concerning power series, Proc. Lond. Math. Soc. s2-13 (1914), 1-5.
  17. Defant, D. García, and M. Maestre, Bohr power series theorem and local Banach space theory, J. reine angew. Math. 557 (2003), 173-197.
  18. A. Defant and L. Frerick, A logarithmic lower bound for multi-dimensional bohr radii, Israel J. Math. 152 (2006), 17-28.
  19. A. Defant, D. García, M. Maestre, and D. Pérez-García , Bohr's strip for vector-valued Dirichlet series, Math. Ann. 342 (2008), 533-555.
  20. A. Defant, M. Maestre, and U. Schwarting, Bohr radii of vector valued holomorphic functions, Adv. Math. 231 (2012), 2837-2857.
  21. A. Defant, Mieczysław Mastyło, and Antonio Pérez, Bohr's phenomenon for functions on the Boolean cube, J. Func. Anal. 275 (2018), 3115-3147.
  22. S. Dilworth, Complex convexity and geometry of Banach spaces, Math. Proc. Camb. Phil. Soc. 99 (1986), 495-506.
  23. P. G. Dixon, Banach algebras satisfying the non-unital von Neumann inequality, Bull. Math. Soc. 27 (1995), 359-362.
  24. P. B. Djakov and M. S. Ramanujan, A remark on Bohr's theorem and its generalizations, J. Anal. 8 (2000), 65-77.
  25. J. Globevnik, On complex strict and uniform convexity, Proc. Amer. Math. Soc. 47 (1975), 175-178.
  26. Vern I. Paulsen, Gelu Popescu and Dinesh Singh, On Bohr's inequality, Proc. Lond. Math. Soc. s3-85 (2002), 493-512.
  27. G. Popescu, Bohr inequalities for free holomorphic functions on polyballs, Adv. Math. 347 (2019), 1002-1053.
  28. E. Thorp and R. Whitley, The strong maximum modulus theorem for analytic functions into a Banach space, Proc. Amer. Math. Soc. 18 (1967), 640-646.