A Geometric characterization of Banach spaces with $p$-Bohr radius
2022
https://doi.org/10.48550/ARXIV.2201.03849Abstract
For any complex Banach space $X$ and each $p \in [1,\infty)$, we introduce the $p$-Bohr radius of order $N(\in \mathbb{N})$ is $\widetilde{R}_{p,N}(X)$ defined by $$ \widetilde{R}_{p,N}(X)=\sup \left\{r\geq 0: \sum_{k=0}^{N}\norm{x_k}^p r^{pk} \leq \norm{f}^p_{H^{\infty}(\mathbb{D}, X)}\right\}, $$ where $f(z)=\sum_{k=0}^{\infty} x_{k}z^k \in H^{\infty}(\mathbb{D}, X)$. We also introduce the following geometric notion of $p$-uniformly $\mathbb{C}$-convexity of order $N$ for a complex Banach space $X$ for some $N \in \mathbb{N}$. For $p\in [2,\infty)$, a complex Banach space $X$ is called $p$-uniformly $\mathbb{C}$-convex of order $N$ if there exists a constant $\lambda > 0$ such that \begin{align}\label{e-0.1} \left(\norm{x_0}^p + \lambda \norm{x_1}^p + {\lambda}^2 \norm{x_2}^p + \cdots + {\lambda}^N \norm{x_N}^p \right)^{1/p} \leq \max_{\theta \in [0,2\pi)} \norm{x_0 + \sum_{k=1}^{N}e^{i \theta}x_k} \end{align} for all $x_0$, $x_1$,$\dots$, $x_N$ $\in X$. We denote $A_{p,N}(X)$,...
References (28)
- M. B. Ahamed, V. Allu and H. Halder, The Bohr Phenomenon for analytic functions on shifted disks, Ann. Fenn. Math. 47 (2022), 103-120.
- L. Aizenberg, Multidimensional analogues of Bohr's theorem on power series, Proc. Amer. Math. Soc. 128 (2000), 1147-1155.
- L. Aizenberg, A. Aytuna and P. Djakov, Generalization of theorem on Bohr for bases in spaces of holomorphic functions of several complex variables, J. Math. Anal.Appl. 258 (2001), 429-447.
- L. Aizenberg, Generalization of results about the Bohr radius for power series, Stud. Math. 180 (2007), 161-168.
- V. Allu and H. Halder, Bohr phenomenon for certain subclasses of Harmonic Mappings, Bull. Sci. Math. 173 (2021), 103053.
- V. Allu and H. Halder, Bohr radius for certain classes of starlike and convex univalent functions, J. Math. Anal. Appl. 493 (2021), 124519.
- V. Allu and H. Halder, Operator valued analogues of multidimensional Bohr's inequality, Canadian Math. Bull. (2021), To appear.
- A. Aytuna and P. Djakov, Bohr property of bases in the space of entire functions and its general- izations, Bull. London Math. Soc. 45(2)(2013), 411-420.
- F. Bayart, D. Pellegrino, and J. B. Seoane-Sepúlveda, The Bohr radius of the n-dimensional polydisk is equivalent to (log n)/n, Adv. Math. 264 (2014), 726-746.
- C. Bénéteau, A. Dahlner and D. Khavinson, Remarks on the Bohr phenomenon, Comput. Methods Funct. Theory 4(1) (2004), 1-19.
- B. Bhowmik and N. Das, A characterization of Banach spaces with nonzero Bohr radius, Arch. Math. 116 (2021), 551-558.
- O. Blasco and M. Pavlovic, Complex convexity and vector-valued Littlewood-Paley inequalities, Bull. London Math. Soc. 35 (2003), 749-758.
- O. Blasco, The Bohr radius of a Banach space, In Vector measures, integration and related topics, 5964, Oper. Theory Adv. Appl., 201, Birkhäuser Verlag, Basel, 2010.
- O. Blasco, The p-Bohr radius of a Banach space, Collect. Math. 68 (2017), 87-100.
- H.P. Boas and D. Khavinson, Bohr's power series theorem in several variables, Proc. Amer. Math. Soc. 125 (1997), 2975-2979.
- H. Bohr, A theorem concerning power series, Proc. Lond. Math. Soc. s2-13 (1914), 1-5.
- Defant, D. García, and M. Maestre, Bohr power series theorem and local Banach space theory, J. reine angew. Math. 557 (2003), 173-197.
- A. Defant and L. Frerick, A logarithmic lower bound for multi-dimensional bohr radii, Israel J. Math. 152 (2006), 17-28.
- A. Defant, D. García, M. Maestre, and D. Pérez-García , Bohr's strip for vector-valued Dirichlet series, Math. Ann. 342 (2008), 533-555.
- A. Defant, M. Maestre, and U. Schwarting, Bohr radii of vector valued holomorphic functions, Adv. Math. 231 (2012), 2837-2857.
- A. Defant, Mieczysław Mastyło, and Antonio Pérez, Bohr's phenomenon for functions on the Boolean cube, J. Func. Anal. 275 (2018), 3115-3147.
- S. Dilworth, Complex convexity and geometry of Banach spaces, Math. Proc. Camb. Phil. Soc. 99 (1986), 495-506.
- P. G. Dixon, Banach algebras satisfying the non-unital von Neumann inequality, Bull. Math. Soc. 27 (1995), 359-362.
- P. B. Djakov and M. S. Ramanujan, A remark on Bohr's theorem and its generalizations, J. Anal. 8 (2000), 65-77.
- J. Globevnik, On complex strict and uniform convexity, Proc. Amer. Math. Soc. 47 (1975), 175-178.
- Vern I. Paulsen, Gelu Popescu and Dinesh Singh, On Bohr's inequality, Proc. Lond. Math. Soc. s3-85 (2002), 493-512.
- G. Popescu, Bohr inequalities for free holomorphic functions on polyballs, Adv. Math. 347 (2019), 1002-1053.
- E. Thorp and R. Whitley, The strong maximum modulus theorem for analytic functions into a Banach space, Proc. Amer. Math. Soc. 18 (1967), 640-646.