Academia.eduAcademia.edu

Outline

The Informational Conception and Basic Physics

2015, Http Vixra Org Abs 1503 0077

Abstract

In our previous arXiv papers ("The Information and the Matter", v1, v5; more systematically the informational conception is presented in the paper "The Information as Absolute", 2014) it was rigorously shown that Matter in our Universe-and Universe as a whole-are some informational systems (structures), which exist as uninterruptedly transforming [practically] infinitesimal subsets of the absolutely infinite and fundamental "Information" Set. Such a conception allows not only to clear essentially a number of metaphysical and epistemological problems in philosophy but, besides, allows to suggest a reasonable physical model. Since Matter in Universe is an informational system where every interaction between Matter's sub-structures, i.e.-particles and systems of the particles-happens always as an exchange by exclusively true information between these structures, the model is based on the conjecture that Matter is some analogue of computer. This conjecture, in turn, allows to introduce in the model the basic logical elements that constitute the material structures and support the informational exchange-i.e. the forces-between the structures. The model is experimentally testable and yet now makes be more clear a number of basic problems in special relativity, quantum mechanics, and, rather probably, in [now-in Newtonian] gravity.

References (96)

  1. Shevchenko, S.V., Tokarevsky, V.V.: The Information and the Matter. (2007) e-print arXiv:physics/0703043v5
  2. Shevchenko, S.V., Tokarevsky, V.V.: Inform Physics do is possible? Poster report on the conference XIXèmes Rencontres de Blois Matter and Energy in the Universe. Blois, Loire Valley, France May 20th -May 26th, (2007)
  3. Shevchenko, S.V., Tokarevsky, V.V.: The Information as Absolute. (2014) e-print http://viXra.org/abs/1402.0173
  4. Zuse, K.: Rechnender Raum. Friedrich Vieweg & Sohn, Braunschweig (1969)
  5. Fredkin, E.: Digital Philosophy. (2000) http://www.digitalphilosophy.org/digital_philosophy/toc.htm
  6. Margolus, N.: Looking at Nature as a Computer. International Journal of Theoretical Physics, Vol. 42(2) (2003). e-print http://people.csail.mit.edu/nhm/looking-at-nature.pdf
  7. Lloyd, S.: Computational capacity of the universe. (2001) e-print arXiv:quant-ph/0110141v1
  8. Lloyd, S.: Universe as quantum computer. (1999) e-print arXiv:quant-ph/9912088v1
  9. Schmidhuber, J.: Algorithmic theories of everything. ( 2000) e-print arXiv:quant-ph/0011122v2
  10. McCabe, G.: Universe creation on a computer. (2008) e-print arXiv:physics/0511116v1
  11. Gershenson, G.: The World as Evolving Information. (2007) e-print arXiv:0704.0304v2
  12. Tegmark, M.: Is "the theory of everything" merely the ultimate ensemble theory? (1998) e-print arXiv:gr-qc/9704009v2
  13. Tegmark, M.: The Mathematical Universe. (2007) e-print arXiv:0704.0646v2
  14. Standish, R.K.: Theory of Nothing. Booksurge: Charleston, (2006) e-print http://www.hpcoders.com.au/theory-of-nothing.pdf
  15. Chiribella, G. M. D'Ariano, P. Perinotti: Informational derivation of Quantum Theory. Phys. Rev A 84 012311 (2011)
  16. D'Ariano, G. M.: A Quantum-Digital Universe. http://www.fqxi.org/community/forum/topic/884 (2011)
  17. Shevchenko, S.V., Tokarevsky, V.V.: Space and Time (2013) e-print http://arxiv.org/abs/1110.0003
  18. Minkowski, H.: Space and Time. Lorentz, Hendrik A., Albert Einstein, Hermann Minkowski, and HermannWeyl, The Principle of Relativity: A Collection of Original Memoirs on the Special and General Theory of Relativity (Dover, New York 1952)
  19. C. F. von Weizsäcker.: Eine Frage Über die Rolle der quadratischen Metrik in der Physik. Zeitschrift für Naturforschung, 7 a: 141, (1952).
  20. C. F. von Weizsäcker.: Komplementarität und Logik. Die Naturwissenschaften, 42: 521-529, 545- 555, (1955.)
  21. C. F. von Weizsäcker.: The Structure of Physics. Springer P.O. Box 17, 3300 AA Dordrecht, The Netherlands.(2006) (Aufbau der Physik,1985)
  22. FitzGerald, G. F. : The Ether and the Earth's Atmosphere. Science, 13 (1889))
  23. Landau, L. D. L. D. Lifshitz L. D.: The Classical Theory of Fields, Fourth Edition: Volume 2 (Course of Theoretical Physics Series) Butterworth-Heinemann; 4 edition (January 15, 1980)
  24. Voigt, V.: On the Principle of Doppler. In German: Ueber das Doppler'sche Princip, Göttinger Nachrichten, 1887 (2): 41-51. Session from January 8, (1887)
  25. Shevchenko, S.V., Tokarevsky, V.V.: Informational physics -possible tests. e-print arXiv:0706.3979v1
  26. Shevchenko, S.V., Tokarevsky, V.V.: To measure the absolute speed is possible? e-pront http://viXra.org/abs/1311.0190
  27. Lorentz, . H. A.: Electromagnetic phenomena in a system moving with any velocity smaller than that of light. Proceedings of the Royal Netherlands Academy of Arts and Sciences, 6: 809-831 (1904) 28. d'E Atkinson, R.: General Relativity in Euclidean Terms. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 272, (1348) 60-78, (1963).
  28. Newburgh, R. G., Phipps, T. E.: A space-proper time formulation of relativistic geometry. Air Force Cambridge Res. Lab. Physical research paper No. 401, Nov. 1969.
  29. Montanus, H.: "Special Relativity in an Absolute Euclidean Space-Time", Physics Essays 4, 350- 356 (1991).
  30. Montanus J.M.C.: Proper Time Physics. Hadronic journal, 22, 635-673 (1999)
  31. Montanus, H.: Proper-Time Formulation of Relativistic Dynamics/ Foundations of Physics. 31 (9) 1357-1400 (2001).
  32. Nawrot, W.: The structure of time and the wave structure of the matter. Galilean Electrodynamics 18, 49-53, (2007)
  33. Nawrot, W.: Is The Space-Time Reality Euclidean?. (2000) e-print http://www.astercity.net/~witnaw/eng2001/examplelorentz.htm
  34. Gersten, A. : Euclidean Special Relativity. Found. Phys. 33, 2003, Pages 1237-1251
  35. van Linden, R.F.J.: Dimensions in Special Relativity Theory -a Euclidean Interpretation.. (2005) e-print http://www.euclideanrelativity.com/pdf/dimensionssrt-rfjvl.pdf
  36. Almeida, J. B.: An alternative to Minkowski space-time. (2008) e-print http://arxiv.org/abs/gr-qc/0104029v2
  37. Shevchenko, S.V., Tokarevsky, V.V.: The informational physics indeed can help to understand Nature? (2010) e- print arXiv:0812.2819v5
  38. Shevchenko, S.V., Tokarevsky, V.V.: The informational model: gravity e-print http://vixra.org/abs/1409.0031 (2014)
  39. Shevchenko, S.V., Tokarevsky, V.V.: On the photon spectrums of some monochromatic beams in Earth gravitation field. (2007) e-print arXiv:0707.4657v2
  40. PDG data. Particle Data Grope. (2012) e-print http://pdg.lbl.gov/
  41. R Pound, G Rebka Phys. Rev. Lett. 4, 337 (1960)
  42. R Pound, J Snider Phys. Rev. B 140, 788 (1965)
  43. L.B. Okun, K.G. Selivanov, V. L. Telegdi Uspehi Physicheckich Nauk 169 (10) 1141 -1147 (1999)
  44. Adam. T et al. The OPERA collaboration.: (September 22, 2011), Measurement of the neutrino velocity with the OPERA detector in the CNGS beam. e-print arXiv:1109.4897v2
  45. Cohen, A.G. and Glashow, S.L.: Pair creation constrains superluminal neutrino propagation Phys. Rev. Lett., 107, 181803 (2011).
  46. Antonello, M. et al. [ICARUS Collaboration].: A search for the analogue to Cherenkov radiation by high energy neutrinos at superluminal speeds in ICARUS. (2011) e-print arXiv:1110.3763v3
  47. Antonello,M et al. [ICARUS Collaboration].: Measurement of the neutrino velocity with the ICARUS detector at the CNGS beam. (March 2012) e-print arXiv:1203.3433v2
  48. Roberts, T. and Schleif, S.: What is the experimental basis of Special Relativity? (2007) e-print http://www.edu-observatory.org/physics-faq/Relativity/SR/experiments.html REFERENCES
  49. Shevchenko, S.V., Tokarevsky, V.V.: The Information and the Matter. (2007) e-print arXiv:physics/0703043v5
  50. Shevchenko, S.V., Tokarevsky, V.V.: Inform Physics do is possible? Poster report on the conference XIXèmes Rencontres de Blois Matter and Energy in the Universe. Blois, Loire Valley, France May 20th -May 26th, (2007)
  51. Shevchenko, S.V., Tokarevsky, V.V.: The Information as Absolute. (2014) e-print http://viXra.org/abs/1402.0173
  52. Zuse, K.: Rechnender Raum. Friedrich Vieweg & Sohn, Braunschweig (1969)
  53. Fredkin, E.: Digital Philosophy. (2000) http://www.digitalphilosophy.org/digital_philosophy/toc.htm
  54. Margolus, N.: Looking at Nature as a Computer. International Journal of Theoretical Physics, Vol. 42(2) (2003). e-print http://people.csail.mit.edu/nhm/looking-at-nature.pdf
  55. Lloyd, S.: Computational capacity of the universe. (2001) e-print arXiv:quant-ph/0110141v1
  56. Lloyd, S.: Universe as quantum computer. (1999) e-print arXiv:quant-ph/9912088v1
  57. Schmidhuber, J.: Algorithmic theories of everything. ( 2000) e-print arXiv:quant-ph/0011122v2
  58. McCabe, G.: Universe creation on a computer. (2008) e-print arXiv:physics/0511116v1
  59. Gershenson, G.: The World as Evolving Information. (2007) e-print arXiv:0704.0304v2
  60. Tegmark, M.: Is "the theory of everything" merely the ultimate ensemble theory? (1998) e-print arXiv:gr-qc/9704009v2
  61. Tegmark, M.: The Mathematical Universe. (2007) e-print arXiv:0704.0646v2
  62. Standish, R.K.: Theory of Nothing. Booksurge: Charleston, (2006) e-print http://www.hpcoders.com.au/theory-of-nothing.pdf
  63. Chiribella, G. M. D'Ariano, P. Perinotti: Informational derivation of Quantum Theory. Phys. Rev A 84 012311 (2011)
  64. D'Ariano, G. M.: A Quantum-Digital Universe. http://www.fqxi.org/community/forum/topic/884 (2011)
  65. Shevchenko, S.V., Tokarevsky, V.V.: Space and Time (2013) e-print http://arxiv.org/abs/1110.0003
  66. Minkowski, H.: Space and Time. Lorentz, Hendrik A., Albert Einstein, Hermann Minkowski, and HermannWeyl, The Principle of Relativity: A Collection of Original Memoirs on the Special and General Theory of Relativity (Dover, New York 1952)
  67. C. F. von Weizsäcker.: Eine Frage Über die Rolle der quadratischen Metrik in der Physik. Zeitschrift für Naturforschung, 7 a: 141, (1952).
  68. C. F. von Weizsäcker.: Komplementarität und Logik. Die Naturwissenschaften, 42: 521-529, 545- 555, (1955.)
  69. C. F. von Weizsäcker.: The Structure of Physics. Springer P.O. Box 17, 3300 AA Dordrecht, The Netherlands.(2006) (Aufbau der Physik,1985)
  70. FitzGerald, G. F. : The Ether and the Earth's Atmosphere. Science, 13 (1889))
  71. Landau, L. D. L. D. Lifshitz L. D.: The Classical Theory of Fields, Fourth Edition: Volume 2 (Course of Theoretical Physics Series) Butterworth-Heinemann; 4 edition (January 15, 1980)
  72. Voigt, V.: On the Principle of Doppler. In German: Ueber das Doppler'sche Princip, Göttinger Nachrichten, 1887 (2): 41-51. Session from January 8, (1887)
  73. Shevchenko, S.V., Tokarevsky, V.V.: Informational physics -possible tests. e-print arXiv:0706.3979v1
  74. Shevchenko, S.V., Tokarevsky, V.V.: To measure the absolute speed is possible? e-pront http://viXra.org/abs/1311.0190
  75. Lorentz, . H. A.: Electromagnetic phenomena in a system moving with any velocity smaller than that of light. Proceedings of the Royal Netherlands Academy of Arts and Sciences, 6: 809-831 (1904) 28. d'E Atkinson, R.: General Relativity in Euclidean Terms. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 272, (1348) 60-78, (1963).
  76. Newburgh, R. G., Phipps, T. E.: A space-proper time formulation of relativistic geometry. Air Force Cambridge Res. Lab. Physical research paper No. 401, Nov. 1969.
  77. Montanus, H.: "Special Relativity in an Absolute Euclidean Space-Time", Physics Essays 4, 350- 356 (1991).
  78. Montanus J.M.C.: Proper Time Physics. Hadronic journal, 22, 635-673 (1999)
  79. Montanus, H.: Proper-Time Formulation of Relativistic Dynamics/ Foundations of Physics. 31 (9) 1357-1400 (2001).
  80. Nawrot, W.: The structure of time and the wave structure of the matter. Galilean Electrodynamics 18, 49-53, (2007)
  81. Nawrot, W.: Is The Space-Time Reality Euclidean?. (2000) e-print http://www.astercity.net/~witnaw/eng2001/examplelorentz.htm
  82. Gersten, A. : Euclidean Special Relativity. Found. Phys. 33, 2003, Pages 1237-1251
  83. van Linden, R.F.J.: Dimensions in Special Relativity Theory -a Euclidean Interpretation.. (2005) e-print http://www.euclideanrelativity.com/pdf/dimensionssrt-rfjvl.pdf
  84. Almeida, J. B.: An alternative to Minkowski space-time. (2008) e-print http://arxiv.org/abs/gr-qc/0104029v2
  85. Shevchenko, S.V., Tokarevsky, V.V.: The informational physics indeed can help to understand Nature? (2010) e- print arXiv:0812.2819v5
  86. Shevchenko, S.V., Tokarevsky, V.V.: The informational model: gravity e-print http://vixra.org/abs/1409.0031 (2014)
  87. Shevchenko, S.V., Tokarevsky, V.V.: On the photon spectrums of some monochromatic beams in Earth gravitation field. (2007) e-print arXiv:0707.4657v2
  88. PDG data. Particle Data Grope. (2012) e-print http://pdg.lbl.gov/
  89. R Pound, G Rebka Phys. Rev. Lett. 4, 337 (1960)
  90. R Pound, J Snider Phys. Rev. B 140, 788 (1965)
  91. L.B. Okun, K.G. Selivanov, V. L. Telegdi Uspehi Physicheckich Nauk 169 (10) 1141 -1147 (1999)
  92. Adam. T et al. The OPERA collaboration.: (September 22, 2011), Measurement of the neutrino velocity with the OPERA detector in the CNGS beam. e-print arXiv:1109.4897v2
  93. Cohen, A.G. and Glashow, S.L.: Pair creation constrains superluminal neutrino propagation Phys. Rev. Lett., 107, 181803 (2011).
  94. Antonello, M. et al. [ICARUS Collaboration].: A search for the analogue to Cherenkov radiation by high energy neutrinos at superluminal speeds in ICARUS. (2011) e-print arXiv:1110.3763v3
  95. Antonello,M et al. [ICARUS Collaboration].: Measurement of the neutrino velocity with the ICARUS detector at the CNGS beam. (March 2012) e-print arXiv:1203.3433v2
  96. Roberts, T. and Schleif, S.: What is the experimental basis of Special Relativity? (2007) e-print http://www.edu-observatory.org/physics-faq/Relativity/SR/experiments.html