Academia.eduAcademia.edu

Outline

Physics as Information Processing

2010

Abstract

I review some recent advances in foundational research at Pavia QUIT group. The general idea is that there is only Quantum Theory without quantization rules, and the whole Physics---including space-time and relativity--is emergent from the quantum-information processing. And since Quantum Theory itself is axiomatized solely on informational principles, the whole Physics must be reformulated in information-theoretical terms: this is the "It from Bit of J. A. Wheeler. The review is divided into four parts: a) the informational axiomatization of Quantum Theory; b) how space-time and relativistic covariance emerge from quantum computation; c) what is the information-theoretical meaning of inertial mass and of $\hbar$, and how the quantum field emerges; d) an observational consequence of the new quantum field theory: a mass-dependent refraction index of vacuum. I will conclude with the research lines that will follow in the immediate future.

References (25)

  1. L. Hardy, Quantum theory from five reasonable axioms, quant-ph/0101012v4 (2001).
  2. C. A. Fuchs, Quantum Mechanics as Quantum Information (and only a little more), quant-ph/0205039 (2002).
  3. G. M. D'Ariano, On the missing axiom of quantum mechanics, Quantum Theory, Reconsideration of Foundations -3, Vaxjő, Sweden, 6-11 June 2005 (Melville, New York) (G. Adenier, A. Y. Khrennikov, and T. M. Nieuwenhuizen, eds.), (AIP, Melville, New York 2006) pp. 114.
  4. G. M. D'Ariano, in Philosophy of quantum information and entanglement, A. Bokulich and G. Jaeger eds., (Cambridge University Press, Cambridge UK, 2010). Also arXive 0807.4383.
  5. G. Chiribella, G. M. D'Ariano, P. Perinotti, Probabilistic Theories with Purification, Phys. Rev. A 81 062348 (2010).
  6. G. Chiribella, G. M. D'Ariano, P. Perinotti, Quantum Theory is a Theory of Information (work in progress: see arXiv 2010-11)
  7. G. Chiribella, G. M. D'Ariano, P. Perinotti, Informational derivation of Quantum Theory arXiv 2011.6451 (2010).
  8. L. Bombelli, J. H. Lee, D. Meyer, and R. Sorkin, Space-Time as a Causal Set, Phys. Rev. Lett. 59, 521 (1987).
  9. R. Blute, I. Ivanov, and P. Panangaden, Discrete quantum causal dynamics, Int. J. Theor. Phys. 42 2025 (2003)
  10. L. Hardy, Foliable Operational Structures for General Probabilistic Theories, arXiv: 0912.4740 (2009)
  11. G. M. D'Ariano, On the "principle of the quantumness", the quantumness of Relativity, and the computational grand-unification, in CP1232 Quantum Theory: Reconsideration of Foundations, 5, edited by A. Y. Khrennikov (AIP, Melville, New York, 2010), pag 3. (Also arXiv:1001.1088)
  12. K. H. Knuth, N. Bahreyni, arXiv: 1005.4172 (2010).
  13. G. M. D'Ariano and A. Tosini, Space-time and special relativity from causal networks, arXiv: 1008.4805 (2010)
  14. S. Wolfram. A New Kind of Science, Wolfram Media (Champaign, 2002).
  15. L. Lamport, Time, clocks, and the ordering of events in a distributed system, Comm. ACM, 21 558 (1978)
  16. I. Stein, The Concept of Object As the Foundation of Physics, San Francisco State University Series in Philosophy, vol. 6 (Peter Lang Publishing, NY 1996)
  17. I. Bialynicki-Birula, Weyl, Dirac, and Maxwell equations on a lattice as unitary cellular automata, Phys. Rev. D 49 6920 (1994)
  18. B. M. Boghosian and W. Taylor, Simulating quantum mechanics on a quantum computer, Physica D: Nonlinear Phenomena 120 30 (1998)
  19. D.A. Meyer, From quantum cellular automata to quantum lattice gases, J. Stat. Phys. 85 551 (1996)
  20. G. M. D'Ariano and A. Tosini, Testing axioms for Quantum Theory on Probabilistic toy-theories, Quant. Inf. Proc. 9 95-141 (2010) (Special Issue on Foundations of Quantum Information) (also arXiv:0911.5409)
  21. Harvey R. Brown, Physical Relativity: Space-Time Structure from a Dynamical Perspective (Claren- don Press, Oxford, 2005)
  22. Max Jammer, Concepts of Simultaneity: From Antiquity to Einstein and Beyond (John Hopkins University, Baltimore Press 2006)
  23. G. M. D'Ariano, The Quantum Field as a Quantum Computer, arXiv (2010)
  24. F. Dowker, J. Henson, and R. D. Sorkin, Mod. Phys. Lett. A 19 1829 (2004).
  25. G. Chiribella, G. M. D'Ariano, P. Perinotti, and B. Valiron, Beyond Quantum Computers, arXiv:0912.0195