Academia.eduAcademia.edu

Outline

THPdb: Database of FDA-approved peptide and protein therapeutics

2017, PloS one

https://doi.org/10.1371/JOURNAL.PONE.0181748

Abstract

THPdb (http://crdd.osdd.net/raghava/thpdb/) is a manually curated repository of Food and Drug Administration (FDA) approved therapeutic peptides and proteins. The information in THPdb has been compiled from 985 research publications, 70 patents and other resources like DrugBank. The current version of the database holds a total of 852 entries, providing comprehensive information on 239 US-FDA approved therapeutic peptides and proteins and their 380 drug variants. The information on each peptide and protein includes their sequences, chemical properties, composition, disease area, mode of activity, physical appearance, category or pharmacological class, pharmacodynamics, route of administration, toxicity, target of activity, etc. In addition, we have annotated the structure of most of the protein and peptides. A number of user-friendly tools have been integrated to facilitate easy browsing and data analysis. To assist scientific community, a web interface and mobile App have also been...

References (27)

  1. Antosova Z, Mackova M, Kral V, Macek T. Therapeutic application of peptides and proteins: parenteral forever? Trends Biotechnol. 2009; 27(11):628-35. Epub 2009/09/22. https://doi.org/10.1016/j.tibtech. 2009.07.009 PMID: 19766335.
  2. Singh S, Singh H, Tuknait A, Chaudhary K, Singh B, Kumaran S, et al. PEPstrMOD: structure prediction of peptides containing natural, non-natural and modified residues. Biol Direct. 2015; 10:73. Epub 2015/ 12/23. https://doi.org/10.1186/s13062-015-0103-4 PMID: 26690490; PubMed Central PMCID: PMCPMC4687368.
  3. Craik DJ, Fairlie DP, Liras S, Price D. The future of peptide-based drugs. Chem Biol Drug Des. 2013; 81 (1):136-47. Epub 2012/12/21. https://doi.org/10.1111/cbdd.12055 PMID: 23253135.
  4. Bruno BJ, Miller GD, Lim CS. Basics and recent advances in peptide and protein drug delivery. Ther Deliv. 2013; 4(11):1443-67. Epub 2013/11/16. https://doi.org/10.4155/tde.13.104 PMID: 24228993; PubMed Central PMCID: PMCPMC3956587.
  5. Fosgerau K, Hoffmann T. Peptide therapeutics: current status and future directions. Drug Discov Today. 2015; 20(1):122-8. Epub 2014/12/03. https://doi.org/10.1016/j.drudis.2014.10.003 PMID: 25450771.
  6. Goeddel DV, Kleid DG, Bolivar F, Heyneker HL, Yansura DG, Crea R, et al. Expression in Escherichia coli of chemically synthesized genes for human insulin. Proc Natl Acad Sci U S A. 1979; 76(1):106-10. Epub 1979/01/01. PMID: 85300; PubMed Central PMCID: PMCPMC382885.
  7. Leader B, Baca QJ, Golan DE. Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov. 2008; 7(1):21-39. Epub 2007/12/22. https://doi.org/10.1038/nrd2399 PMID: 18097458.
  8. Boohaker RJ, Lee MW, Vishnubhotla P, Perez JM, Khaled AR. The use of therapeutic peptides to target and to kill cancer cells. Curr Med Chem. 2012; 19(22):3794-804. Epub 2012/06/26. PMID: 22725698; PubMed Central PMCID: PMCPMC4537071.
  9. Vlieghe P, Lisowski V, Martinez J, Khrestchatisky M. Synthetic therapeutic peptides: science and mar- ket. Drug Discov Today. 2010; 15(1-2):40-56. Epub 2009/11/03. https://doi.org/10.1016/j.drudis.2009. 10.009 PMID: 19879957.
  10. Otvos L Jr., Wade JD. Current challenges in peptide-based drug discovery. Front Chem. 2014; 2:62. Epub 2014/08/26. https://doi.org/10.3389/fchem.2014.00062 PMID: 25152873; PubMed Central PMCID: PMCPMC4126357.
  11. Di L. Strategic approaches to optimizing peptide ADME properties. AAPS J. 2015; 17(1):134-43. Epub 2014/11/05. https://doi.org/10.1208/s12248-014-9687-3 PMID: 25366889; PubMed Central PMCID: PMCPMC4287298.
  12. Agrawal P, Bhalla S, Usmani SS, Singh S, Chaudhary K, Raghava GP, et al. CPPsite 2.0: a repository of experimentally validated cell-penetrating peptides. Nucleic Acids Res. 2016; 44(D1):D1098-103. Epub 2015/11/21. https://doi.org/10.1093/nar/gkv1266 PMID: 26586798; PubMed Central PMCID: PMCPMC4702894.
  13. Singh S, Chaudhary K, Dhanda SK, Bhalla S, Usmani SS, Gautam A, et al. SATPdb: a database of structurally annotated therapeutic peptides. Nucleic Acids Res. 2016; 44(D1):D1119-26. Epub 2015/ 11/04. https://doi.org/10.1093/nar/gkv1114 PMID: 26527728; PubMed Central PMCID: PMCPMC4702810.
  14. Kumar R, Chaudhary K, Sharma M, Nagpal G, Chauhan JS, Singh S, et al. AHTPDB: a comprehensive platform for analysis and presentation of antihypertensive peptides. Nucleic Acids Res. 2015; 43(Data- base issue):D956-62. Epub 2014/11/14. https://doi.org/10.1093/nar/gku1141 PMID: 25392419; PubMed Central PMCID: PMCPMC4383949.
  15. Tyagi A, Tuknait A, Anand P, Gupta S, Sharma M, Mathur D, et al. CancerPPD: a database of antican- cer peptides and proteins. Nucleic Acids Res. 2015; 43(Database issue):D837-43. Epub 2014/10/02. https://doi.org/10.1093/nar/gku892 PMID: 25270878; PubMed Central PMCID: PMCPMC4384006.
  16. Van Dorpe S, Bronselaer A, Nielandt J, Stalmans S, Wynendaele E, Audenaert K, et al. Brainpeps: the blood-brain barrier peptide database. Brain Struct Funct. 2012; 217(3):687-718. Epub 2011/12/30. https://doi.org/10.1007/s00429-011-0375-0 PMID: 22205159.
  17. Wynendaele E, Bronselaer A, Nielandt J, D'Hondt M, Stalmans S, Bracke N, et al. Quorumpeps data- base: chemical space, microbial origin and functionality of quorum sensing peptides. Nucleic Acids Res. 2013; 41(Database issue):D655-9. Epub 2012/11/28. https://doi.org/10.1093/nar/gks1137 PMID: 23180797; PubMed Central PMCID: PMCPMC3531179.
  18. Pirtskhalava M, Gabrielian A, Cruz P, Griggs HL, Squires RB, Hurt DE, et al. DBAASP v.2: an enhanced database of structure and antimicrobial/cytotoxic activity of natural and synthetic peptides. Nucleic Acids Res. 2016; 44(D1):D1104-12. Epub 2015/11/19. https://doi.org/10.1093/nar/gkv1174 PMID: 26578581; PubMed Central PMCID: PMCPMC4702840.
  19. Waghu FH, Barai RS, Gurung P, Idicula-Thomas S. CAMPR3: a database on sequences, structures and signatures of antimicrobial peptides. Nucleic Acids Res. 2016; 44(D1):D1094-7. Epub 2015/10/16. https://doi.org/10.1093/nar/gkv1051 PMID: 26467475; PubMed Central PMCID: PMCPMC4702787.
  20. Dhanda SK, Usmani SS, Agrawal P, Nagpal G, Gautam A, Raghava GP. Novel in silico tools for design- ing peptide-based subunit vaccines and immunotherapeutics. Brief Bioinform. 2016. Epub 2016/03/27. https://doi.org/10.1093/bib/bbw025 PMID: 27016393
  21. Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, Liu Y, et al. DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res. 2014; 42(Database issue):D1091-7. Epub 2013/11/10. https:// doi.org/10.1093/nar/gkt1068 PMID: 24203711; PubMed Central PMCID: PMCPMC3965102.
  22. Rose PW, Prlic A, Bi C, Bluhm WF, Christie CH, Dutta S, et al. The RCSB Protein Data Bank: views of structural biology for basic and applied research and education. Nucleic Acids Res. 2015; 43(Database issue):D345-56. Epub 2014/11/28. https://doi.org/10.1093/nar/gku1214 PMID: 25428375; PubMed Central PMCID: PMCPMC4383988.
  23. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER Suite: protein structure and function prediction. Nat Methods. 2015; 12(1):7-8. Epub 2014/12/31. https://doi.org/10.1038/nmeth.3213 PMID: 25549265; PubMed Central PMCID: PMCPMC4428668.
  24. Kaur H, Garg A, Raghava GP. PEPstr: a de novo method for tertiary structure prediction of small bioac- tive peptides. Protein Pept Lett. 2007; 14(7):626-31. Epub 2007/09/28. PMID: 17897087.
  25. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990; 215(3):403-10. Epub 1990/10/05. https://doi.org/10.1016/S0022-2836(05)80360-2 PMID: 2231712.
  26. Smith TF, Waterman MS. Identification of common molecular subsequences. J Mol Biol. 1981; 147 (1):195-7. Epub 1981/03/25. PMID: 7265238.
  27. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, et al. ChEMBL: a large-scale bioactiv- ity database for drug discovery. Nucleic Acids Res. 2012; 40(Database issue):D1100-7. Epub 2011/09/ 29. https://doi.org/10.1093/nar/gkr777 PMID: 21948594; PubMed Central PMCID: PMCPMC3245175.