Academia.eduAcademia.edu

Outline

SATPdb: a database of structurally annotated therapeutic peptides.

2015

https://doi.org/10.1093/NAR/GKV1114

Abstract

SATPdb (http://crdd.osdd.net/raghava/satpdb/) is a database of structurally annotated therapeutic peptides, curated from 22 public domain peptide databases/datasets including 9 of our own. The current version holds 19192 unique experimentally validated therapeutic peptide sequences having length between 2 and 50 amino acids. It covers peptides having natural, non-natural and modified residues. These peptides were systematically grouped into 10 categories based on their major function or therapeutic property like 1099 anticancer, 10585 antimicrobial, 1642 drug delivery and 1698 antihypertensive peptides. We assigned or annotated structure of these therapeutic peptides using structural databases (Protein Data Bank) and state-of-the-art structure prediction methods like I-TASSER, HHsearch and PEPstrMOD. In addition, SATPdb facilitates users in performing various tasks that include: (i) structure and sequence similarity search, (ii) peptide browsing based on their function and properties, (iii) identification of moonlighting peptides and (iv) searching of peptides having desired structure and therapeutic activities. We hope this database will be useful for researchers working in the field of peptide-based therapeutics.

References (59)

  1. Albericio,F. and Kruger,H.G. (2012) Therapeutic peptides. Future Med. Chem., 4, 1527-1531.
  2. Otvos,L. Jr (2008) Peptide-based drug design: here and now. Methods Mol. Biol., 494, 1-8.
  3. Craik,D.J., Fairlie,D.P., Liras,S. and Price,D. (2013) The future of peptide-based drugs. Chem. Biol. Drug Des., 81, 136-147.
  4. Fosgerau,K. and Hoffmann,T. (2015) Peptide therapeutics: current status and future directions. Drug Discov. Today, 20, 122-128.
  5. Vlieghe,P., Lisowski,V., Martinez,J. and Khrestchatisky,M. (2010) Synthetic therapeutic peptides: science and market. Drug Discov. Today, 15, 40-56.
  6. Kaspar,A.A. and Reichert,J.M. (2013) Future directions for peptide therapeutics development. Drug Discov. Today, 18, 807-817.
  7. Otvos,L. Jr and Wade,J.D. (2014) Current challenges in peptide-based drug discovery. Front. Chem., 2, 62, 1-4, PMID 25152873.
  8. Gentilucci,L., De Marco,R. and Cerisoli,L. (2010) Chemical modifications designed to improve peptide stability: incorporation of non-natural amino acids, pseudo-peptide bonds, and cyclization. Curr. Pharm. Des., 16, 3185-3203.
  9. Zhou,P., Wang,C., Ren,Y., Yang,C. and Tian,F. (2013) Computational peptidology: a new and promising approach to therapeutic peptide design. Curr. Med. Chem., 20, 1985-1996.
  10. Gupta,S., Kapoor,P., Chaudhary,K., Gautam,A., Kumar,R. and Raghava,G.P. (2013) In silico approach for predicting toxicity of peptides and proteins. PLoS One, 8, e73957.
  11. Sharma,A., Singla,D., Rashid,M. and Raghava,G.P. (2014) Designing of peptides with desired half-life in intestine-like environment. BMC Bioinformatics, 15, 282, 1-8, PMID 25141912.
  12. Ettayapuram Ramaprasad,A.S., Singh,S., Gajendra,P.S.R. and Venkatesan,S. (2015) AntiAngioPred: A Server for Prediction of Anti-Angiogenic Peptides. PLoS One, 10, e0136990.
  13. Wang,G., Li,X. and Wang,Z. (2009) APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res., 37, D933-D937.
  14. Wang,P., Hu,L., Liu,G., Jiang,N., Chen,X., Xu,J., Zheng,W., Li,L., Tan,M., Chen,Z. et al. (2011) Prediction of antimicrobial peptides based on sequence alignment and feature selection methods. PLoS One, 6, e18476.
  15. Waghu,F.H., Gopi,L., Barai,R.S., Ramteke,P., Nizami,B. and Idicula-Thomas,S. (2014) CAMP: Collection of sequences and structures of antimicrobial peptides. Nucleic Acids Res., 42, D1154-D1158.
  16. Dhanda,S.K., Gupta,S., Vir,P. and Raghava,G.P. (2013) Prediction of IL4 inducing peptides. Clin. Dev. Immunol., 2013, 263952, 1-9, PMID 24489573.
  17. Gautam,A., Sharma,M., Vir,P., Chaudhary,K., Kapoor,P., Kumar,R., Nath,S.K. and Raghava,G.P. (2015) Identification and characterization of novel protein-derived arginine-rich cell-penetrating peptides. Eur. J. Pharm. Biopharm., 89, 93-106.
  18. Piotto,S.P., Sessa,L., Concilio,S. and Iannelli,P. (2012) YADAMP: yet another database of antimicrobial peptides. Int. J. Antimicrob. Agents, 39, 346-351.
  19. Théolier,J., Fliss,I., Jean,J. and Hammami,R. (2014) MilkAMP: a comprehensive database of antimicrobial peptides of dairy origin. Dairy Sci. Technol., 94, 181-193.
  20. Gogoladze,G., Grigolava,M., Vishnepolsky,B., Chubinidze,M., Duroux,P., Lefranc,M.P. and Pirtskhalava,M. (2014) DBAASP: database of antimicrobial activity and structure of peptides. FEMS Microbiol. Lett., 357, 63-68.
  21. Qureshi,A., Thakur,N., Tandon,H. and Kumar,M. (2014) AVPdb: a database of experimentally validated antiviral peptides targeting medically important viruses. Nucleic Acids Res., 42, D1147-D1153.
  22. Qureshi,A., Thakur,N. and Kumar,M. (2013) HIPdb: a database of experimentally validated HIV inhibiting peptides. PLoS One, 8, e54908.
  23. Gautam,A., Singh,H., Tyagi,A., Chaudhary,K., Kumar,R., Kapoor,P. and Raghava,G.P. (2012) CPPsite: a curated database of cell penetrating peptides. Database (Oxford), 2012, bas015, 1-7, PMID 22403286.
  24. Kapoor,P., Singh,H., Gautam,A., Chaudhary,K., Kumar,R. and Raghava,G.P. (2012) TumorHoPe: a database of tumor homing peptides. PLoS One, 7, e35187.
  25. Gautam,A., Chaudhary,K., Singh,S., Joshi,A., Anand,P., Tuknait,A., Mathur,D., Varshney,G.C. and Raghava,G.P. (2014) Hemolytik: a database of experimentally determined hemolytic and non-hemolytic peptides. Nucleic Acids Res., 42, D444-D449.
  26. Rodriguez Plaza,J.G., Villalon Rojas,A., Herrera,S., Garza-Ramos,G., Torres Larios,A., Amero,C., Zarraga Granados,G., Gutierrez Aguilar,M., Lara Ortiz,M.T., Polanco Gonzalez,C. et al. (2012) Moonlighting peptides with emerging function. PLoS One, 7, e40125.
  27. Kumar,R., Chaudhary,K., Sharma,M., Nagpal,G., Chauhan,J.S., Singh,S., Gautam,A. and Raghava,G.P.S. (2015) AHTPDB: a comprehensive platform for analysis and presentation of antihypertensive peptides. Nucleic Acids Res., 43, D956-D962.
  28. Di Luca,M., Maccari,G., Maisetta,G. and Batoni,G. (2015) BaAMPs: the database of biofilm-active antimicrobial peptides. Biofouling, 31, 193-199.
  29. Hammami,R., Zouhir,A., Le Lay,C., Ben Hamida,J. and Fliss,I. (2010) BACTIBASE second release: a database and tool platform for bacteriocin characterization. BMC Microbiol., 10, 22, 1-5, PMID 20105292.
  30. Van Dorpe,S., Bronselaer,A., Nielandt,J., Stalmans,S., Wynendaele,E., Audenaert,K., Van De Wiele,C., Burvenich,C., Peremans,K., Hsuchou,H. et al. (2012) Brainpeps: the blood-brain barrier peptide database. Brain Struct. Funct., 217, 687-718.
  31. Tyagi,A., Tuknait,A., Anand,P., Gupta,S., Sharma,M., Mathur,D., Joshi,A., Singh,S., Gautam,A. and Raghava,G.P.S. (2015) CancerPPD: a database of anticancer peptides and proteins. Nucleic Acids Res., 43, D837-D843.
  32. Kaas,Q., Yu,R., Jin,A.H., Dutertre,S. and Craik,D.J. (2012) ConoServer: updated content, knowledge, and discovery tools in the conopeptide database. Nucleic Acids Res., 40, D325-D330.
  33. Novkovic,M., Simunic,J., Bojovic,V., Tossi,A. and Juretic,D. (2012) DADP: the database of anuran defense peptides. Bioinformatics, 28, 1406-1407.
  34. Rashid,M., Singla,D., Sharma,A., Kumar,M. and Raghava,G.P. (2009) Hmrbase: a database of hormones and their receptors. BMC Genomics, 10, 307, 1-10, PMID 19589147.
  35. Kim,Y., Bark,S., Hook,V. and Bandeira,N. (2011) NeuroPedia: neuropeptide database and spectral library. Bioinformatics, 27, 2772-2773.
  36. Mehta,D., Anand,P., Kumar,V., Joshi,A., Mathur,D., Singh,S., Tuknait,A., Chaudhary,K., Gautam,S.K., Gautam,A. et al. (2014) ParaPep: a web resource for experimentally validated antiparasitic peptide sequences and their structures. Database (Oxford), 2014, bau051, 1-7,PMID 24923818.
  37. Hammami,R., Ben Hamida,J., Vergoten,G. and Fliss,I. (2009) PhytAMP: a database dedicated to antimicrobial plant peptides. Nucleic Acids Res., 37, D963-968.
  38. Wynendaele,E., Bronselaer,A., Nielandt,J., D'Hondt,M., Stalmans,S., Bracke,N., Verbeke,F., Van De Wiele,C., De Tre,G. and De Spiegeleer,B. (2013) Quorumpeps database: chemical space, microbial origin and functionality of quorum sensing peptides. Nucleic Acids Res., 41, D655-D659.
  39. Rose,P.W., Prlic,A., Bi,C., Bluhm,W.F., Christie,C.H., Dutta,S., Green,R.K., Goodsell,D.S., Westbrook,J.D., Woo,J. et al. (2015) The RCSB Protein Data Bank: views of structural biology for basic and applied research and education. Nucleic Acids Res., 43, D345-D356.
  40. Kaur,H., Garg,A. and Raghava,G.P. (2007) PEPstr: a de novo method for tertiary structure prediction of small bioactive peptides. Protein Pept. Lett., 14, 626-631.
  41. Khoury,G.A., Smadbeck,J., Tamamis,P., Vandris,A.C., Kieslich,C.A. and Floudas,C.A. (2014) Forcefield NCAA: ab initio charge parameters to aid in the discovery and design of therapeutic proteins and peptides with unnatural amino acids and their application to complement inhibitors of the compstatin family. ACS Synthetic Biol., 3, 855-869.
  42. Khoury,G.A., Thompson,J.P., Smadbeck,J., Kieslich,C.A. and Floudas,C.A. (2013) Forcefield PTM: charge and AMBER forcefield parameters for frequently occurring post-translational modifications. J. Chem. Theory Comput., 9, 5653-5674.
  43. Gfeller,D., Michielin,O. and Zoete,V. (2013) SwissSidechain: a molecular and structural database of non-natural sidechains. Nucleic Acids Res., 41, D327-D332.
  44. Gfeller,D., Michielin,O. and Zoete,V. (2012) Expanding molecular modeling and design tools to non-natural sidechains. J. Comput. Chem., 33, 1525-1535.
  45. Remmert,M., Biegert,A., Hauser,A. and Soding,J. (2012) HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat. Methods, 9, 173-175.
  46. Soding,J. (2005) Protein homology detection by HMM-HMM comparison. Bioinformatics, 21, 951-960.
  47. Eswar,N., Webb,B., Marti-Renom,M.A., Madhusudhan,M.S., Eramian,D., Shen,M.Y., Pieper,U. and Sali,A. (2007) Comparative protein structure modeling using MODELLER. Curr. Protoc. Protein Sci., 50, 2.9.1-2.9.31, Chapter 2, Unit 2.9, PMID 18429317.
  48. Yang,J., Yan,R., Roy,A., Xu,D., Poisson,J. and Zhang,Y. (2015) The I-TASSER Suite: protein structure and function prediction. Nat. Methods, 12, 7-8.
  49. Kabsch,W. and Sander,C. (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers, 22, 2577-2637.
  50. Altschul,S.F., Gish,W., Miller,W., Myers,E.W. and Lipman,D.J. (1990) Basic local alignment search tool. J. Mol. Biol., 215, 403-410.
  51. Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z., Miller,W. and Lipman,D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res., 25, 3389-3402.
  52. Eiriksdottir,E., Konate,K., Langel,U., Divita,G. and Deshayes,S. (2010) Secondary structure of cell-penetrating peptides controls membrane interaction and insertion. Biochim. Biophys. Acta, 1798, 1119-1128.
  53. Tyagi,M., Rusnati,M., Presta,M. and Giacca,M. (2001) Internalization of HIV-1 tat requires cell surface heparan sulfate proteoglycans. J. Biol. Chem., 276, 3254-3261.
  54. Jung,H.J., Jeong,K.S. and Lee,D.G. (2008) Effective antibacterial action of tat (47-58) by increased uptake into bacterial cells in the presence of trypsin. J. Microbiol. Biotechnol., 18, 990-996.
  55. Zou,L.L., Ma,J.L., Wang,T., Yang,T.B. and Liu,C.B. (2013) Cell-penetrating Peptide-mediated therapeutic molecule delivery into the central nervous system. Curr. Neuropharmacol., 11, 197-208.
  56. Holohan,C., Van Schaeybroeck,S., Longley,D.B. and Johnston,P.G. (2013) Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer, 13, 714-726.
  57. Shtatland,T., Guettler,D., Kossodo,M., Pivovarov,M. and Weissleder,R. (2007) PepBank-a database of peptides based on sequence text mining and public peptide data sources. BMC Bioinformatics, 8, 280, 1-10, PMID 17678535.
  58. Vita,R., Overton,J.A., Greenbaum,J.A., Ponomarenko,J., Clark,J.D., Cantrell,J.R., Wheeler,D.K., Gabbard,J.L., Hix,D., Sette,A. et al. (2015) The immune epitope database (IEDB) 3.0. Nucleic Acids Res., 43, D405-D412.
  59. Bhasin,M., Singh,H. and Raghava,G.P. (2003) MHCBN: a comprehensive database of MHC binding and non-binding peptides. Bioinformatics, 19, 665-666.