Poisson modules and degeneracy loci
2013, Proceedings of the London Mathematical Society
https://doi.org/10.1112/PLMS/PDS090Abstract
In this paper, we study the interplay between modules and sub-objects in holomorphic Poisson geometry. In particular, we define a new notion of "residue" for a Poisson module, analogous to the Poincaré residue of a meromorphic volume form. Of particular interest is the interaction between the residues of the canonical line bundle of a Poisson manifold and its degeneracy loci-where the rank of the Poisson structure drops. As an application, we provide new evidence in favour of Bondal's conjecture that the rank ≤ 2k locus of a Fano Poisson manifold always has dimension ≥ 2k + 1. In particular, we show that the conjecture holds for Fano fourfolds. We also apply our techniques to a family of Poisson structures defined by Feȋgin and Odesskiȋ, where the degeneracy loci are given by the secant varieties of elliptic normal curves.
References (26)
- M. Bailey, Local classification of generalized complex structures, 1201.4887.
- P. Baum and R. Bott, Singularities of holomorphic foliations, J. Differential Geometry 7 (1972), 279-342.
- A. Beauville, Holomorphic symplectic geometry: a problem list, 1002.4321.
- A. I. Bondal, Non-commutative deformations and Poisson brackets on pro- jective spaces, Max-Planck-Institute Preprint (1993), no. 93-67.
- R. Bott, Lectures on characteristic classes and foliations, Lectures on al- gebraic and differential topology (Second Latin American School in Math., Mexico City, 1971), Springer, Berlin, 1972, pp. 1-94. Lecture Notes in Math., Vol. 279. Notes by Lawrence Conlon, with two appendices by J. Stasheff.
- J. L. Brylinski and G. Zuckerman, The outer derivation of a complex Pois- son manifold, J. Reine Angew. Math. 506 (1999), 181-189.
- D. A. Buchsbaum and D. Eisenbud, Algebra structures for finite free reso- lutions, and some structure theorems for ideals of codimension 3, Amer. J. Math. 99 (1977), no. 3, 447-485.
- S. Evens, J.-H. Lu, and A. Weinstein, Transverse measures, the modular class and a cohomology pairing for Lie algebroids, Quart. J. Math. Oxford Ser. (2) 50 (1999), no. 200, 417-436.
- B. L. Feȋgin and A. V. Odesskiȋ, Sklyanin's elliptic algebras, Funktsional. Anal. i Prilozhen. 23 (1989), no. 3, 45-54, 96.
- Vector bundles on an elliptic curve and Sklyanin algebras, Topics in quantum groups and finite-type invariants, Amer. Math. Soc. Transl. Ser. 2, vol. 185, Amer. Math. Soc., Providence, RI, 1998, pp. 65-84.
- W. Fulton, Intersection theory, second ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998.
- H.-C. Graf v. Bothmer and K. Hulek, Geometric syzygies of elliptic normal curves and their secant varieties, Manuscripta Math. 113 (2004), no. 1, 35-68.
- W. Graham, Nonemptiness of skew-symmetric degeneracy loci, Asian J. Math. 9 (2005), no. 2, 261-271.
- D. R. Grayson and M. E. Stillman, Macaulay2, a software system for re- search in algebraic geometry, Available at http://www.math.uiuc.edu/ Macaulay2/.
- J. Harris and L. W. Tu, On symmetric and skew-symmetric determinantal varieties, Topology 23 (1984), no. 1, 71-84.
- R. Hartshorne, Stable reflexive sheaves, Math. Ann. 254 (1980), no. 2, 121-176.
- T. Józefiak, A. Lascoux, and P. Pragacz, Classes of determinantal varieties associated with symmetric and skew-symmetric matrices, Izv. Akad. Nauk SSSR Ser. Mat. 45 (1981), no. 3, 662-673.
- T. Józefiak and P. Pragacz, Ideals generated by Pfaffians, J. Algebra 61 (1979), no. 1, 189-198.
- K. C. H. Mackenzie and P. Xu, Lie bialgebroids and Poisson groupoids, Duke Math. J. 73 (1994), no. 2, 415-452.
- A. V. Odesskiȋ and V. N. Rubtsov, Polynomial Poisson algebras with a regular structure of symplectic leaves, Teoret. Mat. Fiz. 133 (2002), no. 1, 3-23.
- C. Okonek, Notes on varieties of codimension 3 in P N , Manuscripta Math. 84 (1994), no. 3-4, 421-442.
- G. Ortenzi, V. Rubtsov, and S. R. Tagne Pelap, On the Heisenberg invari- ance and the elliptic Poisson tensors, Lett. Math. Phys. 96 (2011), no. 1-3, 263-284.
- A. Polishchuk, Algebraic geometry of Poisson brackets, J. Math. Sci. (N. Y.) 84 (1997), no. 5, 1413-1444. Algebraic geometry, 7.
- Poisson structures and birational morphisms associated with bun- dles on elliptic curves, Internat. Math. Res. Notices (1998), no. 13, 683-703.
- B. Pym, The Poisson cohomology of projective space, In preparation (2012).
- J. A. Wolf, Representations associated to minimal co-adjoint orbits, Differ- ential geometrical methods in mathematical physics, II (Proc. Conf., Univ. Bonn, Bonn, 1977), Lecture Notes in Math., vol. 676, Springer, Berlin, 1978, pp. 329-349.