Academia.eduAcademia.edu

Outline

Poisson modules and degeneracy loci

2013, Proceedings of the London Mathematical Society

https://doi.org/10.1112/PLMS/PDS090

Abstract

In this paper, we study the interplay between modules and sub-objects in holomorphic Poisson geometry. In particular, we define a new notion of "residue" for a Poisson module, analogous to the Poincaré residue of a meromorphic volume form. Of particular interest is the interaction between the residues of the canonical line bundle of a Poisson manifold and its degeneracy loci-where the rank of the Poisson structure drops. As an application, we provide new evidence in favour of Bondal's conjecture that the rank ≤ 2k locus of a Fano Poisson manifold always has dimension ≥ 2k + 1. In particular, we show that the conjecture holds for Fano fourfolds. We also apply our techniques to a family of Poisson structures defined by Feȋgin and Odesskiȋ, where the degeneracy loci are given by the secant varieties of elliptic normal curves.

References (26)

  1. M. Bailey, Local classification of generalized complex structures, 1201.4887.
  2. P. Baum and R. Bott, Singularities of holomorphic foliations, J. Differential Geometry 7 (1972), 279-342.
  3. A. Beauville, Holomorphic symplectic geometry: a problem list, 1002.4321.
  4. A. I. Bondal, Non-commutative deformations and Poisson brackets on pro- jective spaces, Max-Planck-Institute Preprint (1993), no. 93-67.
  5. R. Bott, Lectures on characteristic classes and foliations, Lectures on al- gebraic and differential topology (Second Latin American School in Math., Mexico City, 1971), Springer, Berlin, 1972, pp. 1-94. Lecture Notes in Math., Vol. 279. Notes by Lawrence Conlon, with two appendices by J. Stasheff.
  6. J. L. Brylinski and G. Zuckerman, The outer derivation of a complex Pois- son manifold, J. Reine Angew. Math. 506 (1999), 181-189.
  7. D. A. Buchsbaum and D. Eisenbud, Algebra structures for finite free reso- lutions, and some structure theorems for ideals of codimension 3, Amer. J. Math. 99 (1977), no. 3, 447-485.
  8. S. Evens, J.-H. Lu, and A. Weinstein, Transverse measures, the modular class and a cohomology pairing for Lie algebroids, Quart. J. Math. Oxford Ser. (2) 50 (1999), no. 200, 417-436.
  9. B. L. Feȋgin and A. V. Odesskiȋ, Sklyanin's elliptic algebras, Funktsional. Anal. i Prilozhen. 23 (1989), no. 3, 45-54, 96.
  10. Vector bundles on an elliptic curve and Sklyanin algebras, Topics in quantum groups and finite-type invariants, Amer. Math. Soc. Transl. Ser. 2, vol. 185, Amer. Math. Soc., Providence, RI, 1998, pp. 65-84.
  11. W. Fulton, Intersection theory, second ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998.
  12. H.-C. Graf v. Bothmer and K. Hulek, Geometric syzygies of elliptic normal curves and their secant varieties, Manuscripta Math. 113 (2004), no. 1, 35-68.
  13. W. Graham, Nonemptiness of skew-symmetric degeneracy loci, Asian J. Math. 9 (2005), no. 2, 261-271.
  14. D. R. Grayson and M. E. Stillman, Macaulay2, a software system for re- search in algebraic geometry, Available at http://www.math.uiuc.edu/ Macaulay2/.
  15. J. Harris and L. W. Tu, On symmetric and skew-symmetric determinantal varieties, Topology 23 (1984), no. 1, 71-84.
  16. R. Hartshorne, Stable reflexive sheaves, Math. Ann. 254 (1980), no. 2, 121-176.
  17. T. Józefiak, A. Lascoux, and P. Pragacz, Classes of determinantal varieties associated with symmetric and skew-symmetric matrices, Izv. Akad. Nauk SSSR Ser. Mat. 45 (1981), no. 3, 662-673.
  18. T. Józefiak and P. Pragacz, Ideals generated by Pfaffians, J. Algebra 61 (1979), no. 1, 189-198.
  19. K. C. H. Mackenzie and P. Xu, Lie bialgebroids and Poisson groupoids, Duke Math. J. 73 (1994), no. 2, 415-452.
  20. A. V. Odesskiȋ and V. N. Rubtsov, Polynomial Poisson algebras with a regular structure of symplectic leaves, Teoret. Mat. Fiz. 133 (2002), no. 1, 3-23.
  21. C. Okonek, Notes on varieties of codimension 3 in P N , Manuscripta Math. 84 (1994), no. 3-4, 421-442.
  22. G. Ortenzi, V. Rubtsov, and S. R. Tagne Pelap, On the Heisenberg invari- ance and the elliptic Poisson tensors, Lett. Math. Phys. 96 (2011), no. 1-3, 263-284.
  23. A. Polishchuk, Algebraic geometry of Poisson brackets, J. Math. Sci. (N. Y.) 84 (1997), no. 5, 1413-1444. Algebraic geometry, 7.
  24. Poisson structures and birational morphisms associated with bun- dles on elliptic curves, Internat. Math. Res. Notices (1998), no. 13, 683-703.
  25. B. Pym, The Poisson cohomology of projective space, In preparation (2012).
  26. J. A. Wolf, Representations associated to minimal co-adjoint orbits, Differ- ential geometrical methods in mathematical physics, II (Proc. Conf., Univ. Bonn, Bonn, 1977), Lecture Notes in Math., vol. 676, Springer, Berlin, 1978, pp. 329-349.