Academia.eduAcademia.edu

Outline

Cohomology associated to a Poisson structure

2016

Abstract

Let M be a paracompact smooth manifold of dimension n, A a Weil algebra and M A the Weil bundle associated. We define and describe the notion of d-Poisson cohomology and of d A -Poisson cohomology on M A .

FAQs

sparkles

AI

What are the properties of Weil algebras in this context?add

The paper reveals that Weil algebras are real, unitary, commutative algebras of finite dimension with a unique maximal ideal of codimension 1, exhibiting a non-zero integer height k, which characterizes their structure.

How is d-Poisson cohomology defined in relation to Poisson manifolds?add

The study defines d-Poisson cohomology through the operator d related to the adjoint representation, linking the cohomology of Poisson manifolds and their infinitely near points, preserving the structure across transformations.

What implications does the augmentation of Weil algebras have on manifolds?add

The augmentation provides a surjective homomorphism, allowing projection of infinitely near points to their origins, indicating how geometric structures are interpreted through Weil algebras.

How is the Poisson structure extended to Weil bundles?add

The research demonstrates that if M is a Poisson manifold, then the bracket {, } A forms an A-Poisson algebra on C ∞ (M A , A), thus sustaining the Poisson framework in the vicinity of M.

What are the characteristics of d A -Poisson cohomology as presented?add

The findings assert that d A -Poisson cohomology operates with the cohomology operator d A, where the center of C ∞ (M A, A) serves as H 0 (M A , ∼ A), indicating noteworthy structural insights.

References (10)

  1. B. G. R. Bossoto, E. Okassa, Champs de vecteurs et formes différentielles sur une variété de points proches, Archivum Mathematicum (Brno), 44(2008) 159-171.
  2. B. G. R. Bossoto, Structures de Jacobi sur une variété des points proches, Math. Vesnik. 62, 2 (2010), 155-167.
  3. B. G. R. Bossoto, E. Okassa, A-poisson structures on Weil bundles, Int., J. Contemp. Math. Sciences, Vol. 7, 2012, n • 16, 785-803.
  4. I. Kolar, P.W. Michor, and J. Slovak, Natural operations in differential geometry. Springer, 1993, 434 p.
  5. A. Lichnerowicz, Les variétés de Poisson et leurs algébres de Lie associées, J. Diff. Geom., 12 (1977), 253-300.
  6. A. Morimoto, Prolongation of connections to bundles of infinitely near points, J. Diff. Geom, t.11(1976), 479-498.
  7. E. Okassa, Prolongement des champs de vecteurs à des variétés de points proches, Annales Faculté des sciences de Toulouse, Vol. VIII, n • 3, 1986- 1987, 349-366.
  8. I. Vaisman, Lectures on the Geometry of Poisson Manifolds, Progress in Math.118, Birkhäuser Verlag, Basel, 1994.
  9. V. V. Shurygin, Smooth manifolds over local algebras and Weil bundles, J. Math. Sci., 108 (2) (2002), 249-294.
  10. A. Weil, Théorie des points proches sur les variétés différentiables, Colloq. Géom. Diff. Strasbourg (1953), 111-117.