Academia.eduAcademia.edu

Outline

Singular Poisson Reduction of Cotangent Bundles

2006, Revista Matemática Complutense

https://doi.org/10.5209/REV_REMA.2006.V19.N2.16607

Abstract

We consider the Poisson reduced space (T * Q)/K, where the action of the compact Lie group K on the configuration manifold Q is of single orbit type and is cotangent lifted to T * Q. Realizing (T * Q)/K as a Weinstein space we determine the induced Poisson structure and its symplectic leaves. We thus extend the Weinstein construction for principal fiber bundles to the case of surjective Riemannian submersions Q Q/K which are of single orbit type.

References (35)

  1. Alekseevsky, Kriegl, Losik, Michor, The Riemannian geometry of orbit spaces. The metric, geodesics, and integrable systems, Publicationes Mathematicae 62, 247-276, Debrecen, 2003.
  2. Alekseevsky, Michor, Differential geometry of g-manifolds, Differential Geometry and its Applications 5, 371-403, 1995.
  3. Arms, Cushman, Gotay, A universal reduction procedure for Hamiltonian group actions, In: Ratiu (ed.), The geometry of Hamiltonian systems (Proceedings), Springer, 1991.
  4. Bierstone, Lifting isotopies from orbit spaces, Topology 14, 245-252, 1975.
  5. Bates, Lerman, Proper group actions and symplectic stratified spaces, Pac. J. Math. 181 (nr. 2), 201-229, 1997.
  6. Blaom, On geometric and dynamic phases, preprint 1998.
  7. Bredon, Introduction to compact transformation groups, Academic Press, New York, 1972.
  8. Cendra, Holm, Marsden, Ratiu, Lagrangian reduction, the Euler-Poincare equations, and semidirect products, AMS Transl. 186, 1-25, 1998.
  9. Dadok, Polar coordinates induced by actions of compact Lie groups Transact. AMS, 288, No. 1, 115-137, 1985.
  10. Davis, Smooth G-manifolds as collections of fiber bundles, Pac. J. Math. 77, 315-363, 1978.
  11. Emmrich, Römer, Orbifolds as configuration spaces of systems with gaugesymmetries, Com- mun. Math. Phys. 129, 69-94, 1990.
  12. Guillemin, Sternberg, Symplectic techniques in physics, Cambridge University Press, 1984.
  13. Gormac, MacPherson, Stratified Morse theory, Springer, 1988.
  14. Hochgerner, Singular cotangent bundle reduction and spin Calogero-Moser systems, preprint, arXiv:math.SG/0411068, 2004.
  15. Marsden, Montgomery, Ratiu, Reduction, symmetry, and phases in mechanics, Memoirs of the AMS 88, no. 436, 1990.
  16. Marsden, Perlmutter, The orbit bundle picture of cotangent bundle reduction, C. R. Math. Acad. Sci. Soc. R. Can. 22, no. 2, 35-54, 2000.
  17. Mather, Notes on topological stability, Harvard, unpublished, 1970.
  18. Michor, Isometric actions of Lie groups and invariants, lecture notes, Univ Vienna, http://www.mat.univie.ac.at/∼michor/tgbook.ps, 1997.
  19. Ortega, Ratiu, Singular reduction of Poisson manifolds, Lett. Math. Phys. 46, 359-372, 1998.
  20. Momentum maps and Hamiltonian reduction, Birkhäuser, PM 222, 2004.
  21. Palais, On the existence of slices for actions of non-compact Lie groups, Ann. of Math. 73, 295-323, 1961.
  22. Palais, Terng, Critical point theory and submanifold geometry, Lecture Notes in Math. 1353, Springer, 1988.
  23. Perlmutter, Ratiu, Gauged Poisson structures, preprint, 2004.
  24. Perlmutter, Rodriguez-Olmos, Sousa-Diaz, On the geometry of reduced cotangent bundles at zero momentum, arXiv:math.SG/0310437v1, 2003.
  25. Pflaum, Smooth structures on stratified spaces, In: Quantization of singular symplectic quo- tient, Eds.: Landsman, Pflaum, Schlichenmaier, PiM 198, Birkhäuser, 2001.
  26. Analytic and geometric study of stratified sets, Lecture Notes in Math. 1768, Springer, 2001.
  27. Schmah, A cotangent bundle slice theorem, arXiv:math.SG/0409148, 2004.
  28. Schwarz, Smooth functions invariant under the action of a compact Lie group, Topology 14, 63-68, 1975.
  29. Sjamaar, Lerman, Stratified symplectic spaces and reduction, Ann. Math. 134, 375-422, 1991.
  30. Smale, Topology and mechanics, Inv. Math. 10, 305-331, 1970.
  31. Weinstein, Symplectic V-manifolds, periodic orbits of Hamiltonian systems, and the volume of certain Riemannian manifolds, Comm. of Pure and Appl. Math. 30, 265-271, 1977.
  32. A universal phase space for particles in a Yang-Mills field, Lett. Math. Phys. 2, 417-420, 1978.
  33. The local structure of Poisson manifolds, J. of Diff. Geom. 18, 523-557, 1983.
  34. Zaalani, Phase space reduction and Poisson structure, J. of Math. Phys. 40, no. 7, 3431- 3438, 1999.
  35. S. Hochgerner, Institut für Mathematik, Universität Wien, Nordbergstrasse 15, A-1090 Vienna, Austria