Singular Poisson Reduction of Cotangent Bundles
2006, Revista Matemática Complutense
https://doi.org/10.5209/REV_REMA.2006.V19.N2.16607Abstract
We consider the Poisson reduced space (T * Q)/K, where the action of the compact Lie group K on the configuration manifold Q is of single orbit type and is cotangent lifted to T * Q. Realizing (T * Q)/K as a Weinstein space we determine the induced Poisson structure and its symplectic leaves. We thus extend the Weinstein construction for principal fiber bundles to the case of surjective Riemannian submersions Q Q/K which are of single orbit type.
References (35)
- Alekseevsky, Kriegl, Losik, Michor, The Riemannian geometry of orbit spaces. The metric, geodesics, and integrable systems, Publicationes Mathematicae 62, 247-276, Debrecen, 2003.
- Alekseevsky, Michor, Differential geometry of g-manifolds, Differential Geometry and its Applications 5, 371-403, 1995.
- Arms, Cushman, Gotay, A universal reduction procedure for Hamiltonian group actions, In: Ratiu (ed.), The geometry of Hamiltonian systems (Proceedings), Springer, 1991.
- Bierstone, Lifting isotopies from orbit spaces, Topology 14, 245-252, 1975.
- Bates, Lerman, Proper group actions and symplectic stratified spaces, Pac. J. Math. 181 (nr. 2), 201-229, 1997.
- Blaom, On geometric and dynamic phases, preprint 1998.
- Bredon, Introduction to compact transformation groups, Academic Press, New York, 1972.
- Cendra, Holm, Marsden, Ratiu, Lagrangian reduction, the Euler-Poincare equations, and semidirect products, AMS Transl. 186, 1-25, 1998.
- Dadok, Polar coordinates induced by actions of compact Lie groups Transact. AMS, 288, No. 1, 115-137, 1985.
- Davis, Smooth G-manifolds as collections of fiber bundles, Pac. J. Math. 77, 315-363, 1978.
- Emmrich, Römer, Orbifolds as configuration spaces of systems with gaugesymmetries, Com- mun. Math. Phys. 129, 69-94, 1990.
- Guillemin, Sternberg, Symplectic techniques in physics, Cambridge University Press, 1984.
- Gormac, MacPherson, Stratified Morse theory, Springer, 1988.
- Hochgerner, Singular cotangent bundle reduction and spin Calogero-Moser systems, preprint, arXiv:math.SG/0411068, 2004.
- Marsden, Montgomery, Ratiu, Reduction, symmetry, and phases in mechanics, Memoirs of the AMS 88, no. 436, 1990.
- Marsden, Perlmutter, The orbit bundle picture of cotangent bundle reduction, C. R. Math. Acad. Sci. Soc. R. Can. 22, no. 2, 35-54, 2000.
- Mather, Notes on topological stability, Harvard, unpublished, 1970.
- Michor, Isometric actions of Lie groups and invariants, lecture notes, Univ Vienna, http://www.mat.univie.ac.at/∼michor/tgbook.ps, 1997.
- Ortega, Ratiu, Singular reduction of Poisson manifolds, Lett. Math. Phys. 46, 359-372, 1998.
- Momentum maps and Hamiltonian reduction, Birkhäuser, PM 222, 2004.
- Palais, On the existence of slices for actions of non-compact Lie groups, Ann. of Math. 73, 295-323, 1961.
- Palais, Terng, Critical point theory and submanifold geometry, Lecture Notes in Math. 1353, Springer, 1988.
- Perlmutter, Ratiu, Gauged Poisson structures, preprint, 2004.
- Perlmutter, Rodriguez-Olmos, Sousa-Diaz, On the geometry of reduced cotangent bundles at zero momentum, arXiv:math.SG/0310437v1, 2003.
- Pflaum, Smooth structures on stratified spaces, In: Quantization of singular symplectic quo- tient, Eds.: Landsman, Pflaum, Schlichenmaier, PiM 198, Birkhäuser, 2001.
- Analytic and geometric study of stratified sets, Lecture Notes in Math. 1768, Springer, 2001.
- Schmah, A cotangent bundle slice theorem, arXiv:math.SG/0409148, 2004.
- Schwarz, Smooth functions invariant under the action of a compact Lie group, Topology 14, 63-68, 1975.
- Sjamaar, Lerman, Stratified symplectic spaces and reduction, Ann. Math. 134, 375-422, 1991.
- Smale, Topology and mechanics, Inv. Math. 10, 305-331, 1970.
- Weinstein, Symplectic V-manifolds, periodic orbits of Hamiltonian systems, and the volume of certain Riemannian manifolds, Comm. of Pure and Appl. Math. 30, 265-271, 1977.
- A universal phase space for particles in a Yang-Mills field, Lett. Math. Phys. 2, 417-420, 1978.
- The local structure of Poisson manifolds, J. of Diff. Geom. 18, 523-557, 1983.
- Zaalani, Phase space reduction and Poisson structure, J. of Math. Phys. 40, no. 7, 3431- 3438, 1999.
- S. Hochgerner, Institut für Mathematik, Universität Wien, Nordbergstrasse 15, A-1090 Vienna, Austria