Academia.eduAcademia.edu

Outline

Conformal Coupling and Invariance in Different Dimensions

International Journal of Modern Physics D

https://doi.org/10.1142/S0218271895000302

Abstract

Conformal transformations of the following kinds are compared: (1) conformal coordinate transformations, (2) conformal transformations of Lagrangian models for a D-dimensional geometry, given by a Riemannian manifold M with metric g of arbitrary signature, and (3) conformal transformations of (mini-)superspace geometry. For conformal invariance under these transformations the following applications are given respectively: (1) Natural time gauges for multidimensional geometry, (2) conformally equivalent Lagrangian models for geometry coupled to a spatially homogeneous scalar field, and (3) the conformal Laplace operator on the n-dimensional manifold ℳ of minisuperspace for multidimensional geometry and the Wheeler-de Witt equation. The conformal coupling constant ξc is critically distinguished among arbitrary couplings ξ, for both, the equivalence of Lagrangian models with D-dimensional geometry and the conformal geometry on n-dimensional minisuperspace. For dimension D=3, 4, 6 or 10...

References (23)

  1. U. Bleyer, M. Rainer and A. Zhuk, Conformal Transformation of Multidimensional Cos- mological Models and their Solutions, Preprint FUB-HEP/94-3, FU Berlin (1994).
  2. U. Bleyer, Multidimensional Cosmology, p. 101-11 in: The Earth and the Universe (A Festschrift in Honour of Hans-Jürgen Treder), ed.: W. Schröder, Science Ed., Bremen (1993).
  3. V. D. Ivashchuk, V. N. Melnikov, A. I. Zhuk, Nuovo Cim. B 104, 575 (1989).
  4. H. J. Schmidt, The Metric in the Superspace of Riemannian Metrics and its Relation to Gravity, p. 405 in: Diff. Geom. and Appl., ed.: D. Krupka (Brno 1989).
  5. S. T. Swift, J. Math. Phys. 33, 3723 (1992);
  6. J. Math. Phys. 34, 3825 (1993);
  7. J. Math. Phys. 34, 3841 (1993).
  8. S. Gottlöber, V. Müller, H.-J. Schmidt and A. A. Starobinsky, Int. J. Mod. Phys. D 1, 257 (1992).
  9. T. Futamase and K. Maeda, Phys. Rev. D 39, 399 (1989).
  10. D. N. Page, J. Math. Phys. 32, 3427 (1991).
  11. H. J. Schmidt, Phys. Lett. B 214, 519 (1988).
  12. J. J. Halliwell, Phys. Rev. D 38, 2268 (1988).
  13. M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics, p. 197, Series: Interdis- ciplinary Applied Mathematics 1, Springer-Verlag, New York (1988).
  14. K. Maeda, Phys. Rev. D 39, 3159 (1989).
  15. B. C. Xanthapoulos and Th. E. Dialynas, J. Math. Phys. 33, 1463 (1992).
  16. D. V. Gal'tsov and B. C. Xanthopoulos, J. Math. Phys. 33, 273 (1992).
  17. G. W. Gibbons and S. W. Hawking, Phys. Rev. D 15, 2752 (1977).
  18. H. D. Zeh, The Physical Basis of the Direction of Time, 2nd. ed. Springer-Verlag (Hei- delberg, 1991).
  19. T. Christodoulakis and J. Zanelli, Nuovo Cim. B 93, 1 (1986).
  20. T. Christodoulakis and J. Zanelli, Class. Quantum Grav. 4, 851 (1987).
  21. A. I. Zhuk, Class. Quant. Grav. 9, 2029 (1992).
  22. A. I. Zhuk, Sov J. Nucl. Phys. 55, 149 (1992);
  23. Phys. Rev. D 45, 1192 (1992).