Conformal Coupling and Invariance in Different Dimensions
International Journal of Modern Physics D
https://doi.org/10.1142/S0218271895000302Abstract
Conformal transformations of the following kinds are compared: (1) conformal coordinate transformations, (2) conformal transformations of Lagrangian models for a D-dimensional geometry, given by a Riemannian manifold M with metric g of arbitrary signature, and (3) conformal transformations of (mini-)superspace geometry. For conformal invariance under these transformations the following applications are given respectively: (1) Natural time gauges for multidimensional geometry, (2) conformally equivalent Lagrangian models for geometry coupled to a spatially homogeneous scalar field, and (3) the conformal Laplace operator on the n-dimensional manifold ℳ of minisuperspace for multidimensional geometry and the Wheeler-de Witt equation. The conformal coupling constant ξc is critically distinguished among arbitrary couplings ξ, for both, the equivalence of Lagrangian models with D-dimensional geometry and the conformal geometry on n-dimensional minisuperspace. For dimension D=3, 4, 6 or 10...
References (23)
- U. Bleyer, M. Rainer and A. Zhuk, Conformal Transformation of Multidimensional Cos- mological Models and their Solutions, Preprint FUB-HEP/94-3, FU Berlin (1994).
- U. Bleyer, Multidimensional Cosmology, p. 101-11 in: The Earth and the Universe (A Festschrift in Honour of Hans-Jürgen Treder), ed.: W. Schröder, Science Ed., Bremen (1993).
- V. D. Ivashchuk, V. N. Melnikov, A. I. Zhuk, Nuovo Cim. B 104, 575 (1989).
- H. J. Schmidt, The Metric in the Superspace of Riemannian Metrics and its Relation to Gravity, p. 405 in: Diff. Geom. and Appl., ed.: D. Krupka (Brno 1989).
- S. T. Swift, J. Math. Phys. 33, 3723 (1992);
- J. Math. Phys. 34, 3825 (1993);
- J. Math. Phys. 34, 3841 (1993).
- S. Gottlöber, V. Müller, H.-J. Schmidt and A. A. Starobinsky, Int. J. Mod. Phys. D 1, 257 (1992).
- T. Futamase and K. Maeda, Phys. Rev. D 39, 399 (1989).
- D. N. Page, J. Math. Phys. 32, 3427 (1991).
- H. J. Schmidt, Phys. Lett. B 214, 519 (1988).
- J. J. Halliwell, Phys. Rev. D 38, 2268 (1988).
- M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics, p. 197, Series: Interdis- ciplinary Applied Mathematics 1, Springer-Verlag, New York (1988).
- K. Maeda, Phys. Rev. D 39, 3159 (1989).
- B. C. Xanthapoulos and Th. E. Dialynas, J. Math. Phys. 33, 1463 (1992).
- D. V. Gal'tsov and B. C. Xanthopoulos, J. Math. Phys. 33, 273 (1992).
- G. W. Gibbons and S. W. Hawking, Phys. Rev. D 15, 2752 (1977).
- H. D. Zeh, The Physical Basis of the Direction of Time, 2nd. ed. Springer-Verlag (Hei- delberg, 1991).
- T. Christodoulakis and J. Zanelli, Nuovo Cim. B 93, 1 (1986).
- T. Christodoulakis and J. Zanelli, Class. Quantum Grav. 4, 851 (1987).
- A. I. Zhuk, Class. Quant. Grav. 9, 2029 (1992).
- A. I. Zhuk, Sov J. Nucl. Phys. 55, 149 (1992);
- Phys. Rev. D 45, 1192 (1992).