Academia.eduAcademia.edu

Outline

Remarks on Multi-Dimensional Conformal Mechanics

2009, Symmetry, Integrability and Geometry: Methods and Applications

https://doi.org/10.3842/SIGMA.2009.004

Abstract

Recently, Galajinsky, Lechtenfeld and Polovnikov proposed an elegant grouptheoretical transformation of the generic conformal-invariant mechanics to the free one. Considering the classical counterpart of this transformation, we relate this transformation with the Weil model of Lobachewsky space.

References (25)

  1. de Alfaro V., Fubini S., Furlan G., Conformal invariance in quantum mechanics, Nuovo Cimento A 34 (1976), 569-612.
  2. Calogero F., Solution of a three-body problem in one-dimension, J. Math. Phys. 10 (1969), 2191-2196.
  3. Calogero F., Solution of the one-dimensional N -body problems with quadratic and/or inversely quadratic pair potentials, J. Math. Phys. 12 (1971), 419-436.
  4. Polychronakos A.P., Physics and mathematics of Calogero particles, J. Phys. A: Math. Gen. 39 (2006), 12793-12845, hep-th/0607033.
  5. Gurappa N., Prasanta K., Equivalence of the Calogero-Sutherland model to free harmonic oscillators, Phys. Rev. B 59 (1999), R2490-R2493, cond-mat/9710035.
  6. Ghosh P.K., Super-Calogero-Moser-Sutherland systems and free super-oscillators: a mapping, Nuclear Phys. B 595 (2001), 519-535, hep-th/0007208.
  7. Brzezinski T., Gonera C., Maslanka P., On the equivalence of the rational Calogero-Moser system to free particles, Phys. Lett. A 254 (1999), 185-196, hep-th/9810176.
  8. Galajinsky A., Lechtenfeld O., Polovnikov K., Calogero models and nonlocal conformal transformations, Phys. Lett. B 643 (2006), 221-227, hep-th/0607215.
  9. Freedman D.Z., Mende P.F., An exactly solvable N -particle system in supersymmetric quantum mechanics, Nuclear Phys. B 344 (1990), 317-343.
  10. Galajinsky A., Lechtenfeld O., Polovnikov K., N = 4 superconformal Calogero models, J. High Energy Phys. 2007 (2007), no. 11, 008, 23 pages, arXiv:0708.1075.
  11. Galajinsky A., Lechtenfeld O., Polovnikov K., N = 4 mechanics, WDVV equations and roots, arXiv:0802.4386.
  12. Lechtenfeld O., WDVV solutions from orthocentric polytopes and Veselov systems, arXiv:0805.3245.
  13. Galajinsky A.V., Remark on quantum mechanics with conformal Galilean symmetry, Phys. Rev. D 78 (2008), 087701, 3 pages, arXiv:0808.1553.
  14. Hakobyan T., Nersessian A., Lobachevsky geometry of (super)conformal mechanics, arXiv:0803.1293.
  15. Landau L.D., Lifshits E.M., Mechanics, 5th ed., Nauka, Moscow, 2004.
  16. Higgs P.W., Dynamical symmetries in a spherical geometry. I, J. Phys. A: Math. Gen. 12 (1979), 309-323.
  17. Leemon H.I., Dynamical symmetries in a spherical geometry. II, J. Phys. A: Math. Gen. 12 (1979), 489-501.
  18. Schrödinger E., A method of determining quantum-mechanical eigenvalues and eigenfunctions, Proc. Roy. Irish Acad. Sect. A 46 (1941), 9-16.
  19. Schrödinger E., Further studies on solving eigenvalue problems by factorization, Proc. Roy. Irish Acad. Sect. A 46 (1941), 183-206.
  20. Schrödinger E., The factorization of the hypergeometric equation, Proc. Roy. Irish Acad. Sect. A 47 (1941), 53-54, physics/9910003.
  21. Otchik V.S., Symmetry and separation of variables in the two-center Coulomb problem in three dimensional spaces of constant curvature, Dokl. Akad. Nauk BSSR 35 (1991), 420-424 (in Russian).
  22. Nersessian A., Yeghikyan V., Anisotropic inharmonic Higgs oscillator and related (MICZ-)Kepler-like sys- tems, J. Phys. A: Math. Theor. 41 (2008), 155203, 11 pages, arXiv:0710.5001.
  23. Hakobyan T., Nersessian A., Yeghikyan V., Cuboctahedric Higgs oscillator from the Calogero model, arXiv:0808.0430.
  24. Bellucci S., Krivonos S., Sutulin A., N = 4 supersymmetric 3-particles Calogero model, Nuclear Phys. B 805 (2008), 24-39, arXiv:0805.3480.
  25. Arnold V.I., Mathematical methods in classical mechanics, Nauka, Moscow, 1973.