Academia.eduAcademia.edu

Outline

K-causal structure of space-time in general relativity

2008, Pramana

https://doi.org/10.1007/S12043-008-0021-4

Abstract

Using K-causal relation introduced by Sorkin and Woolgar [26], we generalize results of Garcia-Parrado and Senovilla [8 , 9] on causal maps. We also introduce causality conditions with respect to K-causality which are analogous to those in classical causality theory and prove their inter relationships. We introduce a new causality condition following the work of Bombelli and Noldus [3] and show that this condition lies in between global hyperbolicity and causal simplicity. This approach is simpler and more general as compared to traditional causal approach [11 , 19] and it has been used by Penrose et.al [20] in giving a new proof of positivity of mass theorem. C 0 space-time structures arise in many mathematical and physical situations like conical singularities, discontinuous matter distributions, phenomena of topology-change in quantum field theory etc.

References (28)

  1. J K Beem, General Relativity and Gravitation, 8 , No.4, 245 (1977).
  2. J K Beem, P E Ehrlich and K L Easley, Global Lorentzion Geometry, (Monographs textbooks. Pure Appl Mathematics, Dekker Inc., New York 1996).
  3. L Bombelli and J Noldus, Class.Quantum Grav., 21, 4429 (2004).
  4. C J S Clarke and P S Joshi, Class.Quantum Grav., 5, 19-25 (1988).
  5. J Dieckmann, Gen. Rel. Grav. 20 , No.9, 59 (1988).
  6. H F Dowker, R S Garcia, S Surya, Class. Quantum Grav., 17, 4377 -4396 (2000).
  7. H F Dowker, R S Garcia, S Surya, Class. Quantum Grav., 17, 697 -712 (2000).
  8. A Garcia-Parrado and J M Senovilla, Class.Quantum Grav. 20 , 625 (2003).
  9. A Garcia-Parrado and J M Senovila, Class.Quant.Grav., 21, 661-696, (2004).
  10. R Geroch, J Math Phys, 11 , 437 (1970).
  11. S W Hawking and G F R Ellis, The Large Scale Structure of Space-time, (Cambridge Univ Press, 1973).
  12. S W Hawking and R K Sachs, Commun. Math. Phys., 35, 287 (1974).
  13. J Hilgert and G Olafsson, Causal symmetric spaces, Geometry and Harmonic Analysis, ( Academic Press, New York 1997).
  14. P S Joshi, Global Aspects in Gravitation and Cosmology, ( Oxford Science Publi- cations, 1993).
  15. K Martin, Class.Quant.Grav., 23, 1241-1252 (2006).
  16. K Martin and P Panangaden, gr-qc/0407093.
  17. K Martin and P Panangaden, Commun.Math.Phys., 267, 563-586 (2006).
  18. E Minguzzi, gr-qc/0703128.
  19. R Penrose, Techniques of Differential Topology in Relativity, ( AMS Colloquium Publications, 1972).
  20. R Penrose, R D Sorkin and E Woolgar, gr-qc/9301015.
  21. M Rainer, Int. J. Mod. Phys., D 4, 397-416 (1995).
  22. M Rainer, Gravitation and Cosmology, 1, 121-130 (1995).
  23. D P Rideout and R D Sorkin, Phys. Rev., D 61, 024002 (2000).
  24. R D Sorkin gr-qc/0309009.
  25. R D Sorkin gr-qc/ 0710.1675.
  26. R D Sorkin and E Woolgar, Class.Quantum Grav., 3, 1971 (1996).
  27. R Wald , General Relativity, (Univ of Chicago Press, 1984).
  28. E C Zeeman, J. Math. Phys, 5, 490 (1964).