Academia.eduAcademia.edu

Outline

Bulk viscous matter and recent acceleration of the universe

2015, The European Physical Journal C

https://doi.org/10.1140/EPJC/S10052-015-3567-6

Abstract

The evolution of the bulk viscous matter dominated universe has been analysed using the full causal theory for the evolution of the viscous pressure in the context of the recent acceleration of the universe. The form of the viscosity is taken as ξ = αρ 1/2. We obtained analytical solutions for the Hubble parameter and scale factor of the universe. The model parameters have been computed using the observational data. The evolution of the prominent cosmological parameters was obtained. The age of the universe for the best estimated model parameters is found to be less than observational value. The viscous matter behaves like a stiff fluid in the early phase and evolves to a negative pressure fluid in the later phase. The equation of state is found to be stabilised with value ω > −1. The local as well as generalised second law of thermodynamics is satisfied. The statefinder diagnostic shows that this model is distinct from the standard ΛCDM. One of the marked deviations seen in this model to be compared with the corresponding model using the Eckart approach is that in this model the bulk viscosity decreases with the expansion of the universe, while in the Eckart formalism it increases from negative values in the early universe towards positive values.

References (53)

  1. A.G. Riess et al., Supernova Search Team collaboration], Observa- tional evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998)
  2. S. Perlmutter et al., Supernova Cosmology Project collaboration], Measurements of Ω and Λ from 42 high redshift supernovae. Astrophys. J. 517, 565 (1999)
  3. E.J. Copeland, M. Sami, S. Tsujikawa, Dynamics of dark energy. Int. J. Mod. Phys. D 15, 1753 (2006)
  4. Y. Fujii, Origin of the gravitational constant and particle masses in scale invariant scalar tensor theory. Phys. Rev. D 26, 2580 (1982)
  5. S.M. Carroll, Quintessence and the rest of the world. Phys. Rev. Lett. 81, 3067 (1998)
  6. R.R. Cadwell, M. Kamionkowski, N.N. Weinberg, Phantom energy: dark energy with ω< -1 causes a cosmic doomsday. Phys. Rev. Lett. 91, 071301 (2003)
  7. T. Padmanabhan, S.M. Chitre, Viscous universes. Phys. Lett. B 120, 443 (1987)
  8. J.C. Fabris, S.V.B. Goncalves, R. de Sa Ribeiro, Bulk viscosity driving the acceleration of the universe. Gen. Relativ. Gravit. 38, 495 (2006)
  9. B. Li, J.D. Barrow, Does bulk viscosity create a viable unified dark matter model? Phys. Rev. D 79, 103521 (2009)
  10. W.S. Hipolito, H.E.S. Velten, W. Zimdahl, The viscous dark fluid universe. Phys. Rev. D 82, 063507 (2010)
  11. A. Avelino, U. Nucamendi, Can a matter-dominated model with constant bulk viscosity drive the accelerated expansion of the uni- verse? JCAP 04, 006 (2009)
  12. A. Avelino, U. Nucamendi, Exploring a matter-dominated model with bulk viscosity to drive the accelerated expansion of the uni- verse. JCAP 08, 009 (2010)
  13. Athira Sasidharan, Titus K. Mathew, Bulk viscous matter and recent acceleration of the universe. Eur. Phys. J. C 75, 348 (2015)
  14. Athira Sasidharan, Titus K. Mathew, Phase space analysis of bulk viscous matter dominated universe. JHEP 06, 138 (2016)
  15. I. Brevik, O. Gron, John de Haro, S.D. Odintsov, E.N. Saridakis, Viscous cosmology for early and late time universe. Int. J. Mod. Phys. D 26, 173004 (2017)
  16. K. Bamba, S. Capozeillo, S. Nojiri, S.D. Odintsove, Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests. Astrophys. Space Sci. 342, 155 (2012)
  17. C. Eckart, The thermodynamics of irreversible processes. III. Rel- ativistic theory of the simple fluid. Phys. Rev. 58, 919 (1940)
  18. L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Addison-Wesley, USA, 1959)
  19. W. Israel, Nonstationary irreversible thermodynamics: a causal rel- ativistic theory. Ann. Phys. (N. Y.) 100, 310 (1976)
  20. Israel, J.M. Stewart, Thermodynamics of non stationary and tran- sient effects in a relativistic gas. Phys. Lett. B 58, 213 (1976)
  21. W. Israel, J.M. Stewart, Transient relativistic thermodynamics and kinetic theory. Ann. Phys. (N. Y.) 118, 341 (1979)
  22. W. Israel, J.M. Stewart, On transient relativistic thermodynamics and kinetic theory. II. Proc. R. Soc. Lond. B 365, 43 (1979)
  23. W.A. Hiscock, J. Salmonson, Dissipative Boltzmann Robertson Walker cosmologies. Phys. Rev. D 43, 3249 (1991)
  24. A.A. Coley, R.J. van den Hoogen, Qualitative analysis of vis- cous fluid cosmological models satisfying the Israel-Stewart theory of irreversible thermodynamics. Class. Quantum Grav. 12, 1977 (1995)
  25. I. Brevik, O. Gorbunova, Dark energy and viscous cosmology. Gen. Relativ. Gravit. 37, 2039 (2005)
  26. A. Avelino, R. Garcia-Salcedo, T. Gonzalez, U. Nucamendi, I. Quiros, Bulk viscous matter dominated universe: asymptotic prop- erties. JCAP 08, 012 (2013)
  27. W.A. Hiscock, L. Lindblom, Stability and causality in dissipative relativistic fluids. Ann. Phys. (N. Y.) 151, 466 (1983)
  28. W.A. Hiscock, L. Lindblom, Generic instabilities in first-order dis- sipative relativistic fluid theories. Phys. Rev. D 31, 725 (1985)
  29. R. Maartens, V. Mendez, Nonlinear bulk viscosity and inflation. Phys. Rev. D 55, 1937 (1997)
  30. M.K. Mak, T. Harko, Exact causal viscous cosmologies. Gen. Rel- ativ. Garvit. 30, 1171 (1998)
  31. M.K. Mak, T. Harko, Full causal bulk viscous cosmological mod- els. J. Math. Phys. 39, 5458 (1998)
  32. W. Zimdahl, Cosmological particle production, causal thermody- namics and inflationary expansion. Phys. Rev. D 61, 083511 (2000)
  33. M. Zakari, D. Jou, Equations of state and transport equations in viscous cosmological models. Phys. Rev. D 48, 1597 (1993)
  34. A.A. Cooley, R.J. van den Hoogan, R. Maartens, Qualitative vis- cous cosmology. Phys. Rev. D 54, 1393 (1996)
  35. M. Cataldo, N. Cruz, S. Lepe, Viscous dark energy and phantom evolution. Phys. Lett. B 619, 005 (2005)
  36. O.F. Piattella, J.C. Fabris, W. Zimdahl, Bulk viscous cosmology with causal transport theory. JCAP 05, 029 (2011)
  37. R. Maartens, Dissipative cosmology. Class. Quant. Grav. 12, 1455 (1995)
  38. L.P. Chimento, A.S. Jacubi, Dissipative cosmological solutions. Class. Quant. Grav. 14, 1811 (1997)
  39. U. Alam, V. Sahini, A.A. Starobinsky, The case for dynamical dark energy revisited. JCAP 0406, 008 (2004)
  40. M. Tegmark et al., Cosmological constraints from the SDSS lumi- nous red galaxies. Phys. Rev. D 74, 123507 (2006)
  41. E. Carretta, R.G. Gratton, G. Clementini, F.Fusi Pecci, Distances, ages and epoch of formation of globular clusters. Astrophys. J. 533, 215 (2000)
  42. E. Komatsu et al., WMAP Collaboration, Seven year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmologi- cal interpretation. Astrophys. J. Suppl. 192, 18 (2011)
  43. L.P. Chimanto, M.G. Richarte, Interacting dark matter and modified holographic Ricci dark energy induce a relaxed Chaplygin gas. Phys. Rev. D 84, 123507 (2011)
  44. I. Brevik, E. Elizalde, S. Nojiri, S.D. Odintsov, Viscous little rip cosmology. Phys. Rev. D 84, 103508 (2011)
  45. E.W. Kolb, M.S. Turner, The Early Universe (Addison-Wesley, California, 1990)
  46. S. Weinberg, Gravitation and Cosmology: Principles and Applica- tions of the General Theory of Relativity (Wiley, New York, 1972)
  47. G.W. Gibbons, S.W. Hawking, Cosmological event horizons, ther- modynamics, and particle creation. Phys. Rev. D 15, 2738 (1977)
  48. T.K. Mathew, R. Aiswarya, K.S. Vidya, Cosmological horizon entropy and generalized second law for flat Friedmann universe. Eur. Phys. J. C 73, 2619 (2013)
  49. A. Sheykhi, Thermodynamics of holographic interacting dark energy with the apparent horizon as an IR cutoff. Class. Quant. Grav. 27, 025007 (2010)
  50. P.C.W. Davis, Cosmological horizon and generalized second law of thermodynamics. Class. Quant. Grav. 4, L225 (1987)
  51. M.R. Setare, A. Sheykhi, Viscous dark energy and generalized sec- ond law of thermodynamics. Int. J. Mod. Phys. D 19, 1205 (2010)
  52. V. Sahni, T.D. Saini, A.A. Starobinsky, U. Alam, Statefinder-A new geometrical diagnostic of dark energy. JETP Lett. 77, 201 (2003)
  53. M. Kowalski et al., Improved cosmological constraints from new, old, and combined supernova data set. Astrophys. J. 686, 749 (2008)