Academia.eduAcademia.edu

Outline

Bulk viscous matter-dominated Universes: asymptotic properties

2013, Journal of Cosmology and Astroparticle Physics

https://doi.org/10.1088/1475-7516/2013/08/012

Abstract

By means of a combined use of the type Ia supernovae and H(z) data tests, together with the study of the asymptotic properties in the equivalent phase space -through the use of the dynamical systems tools -we demonstrate that the bulk viscous matterdominated scenario is not a good model to explain the accepted cosmological paradigm, at least, under the parametrization of bulk viscosity considered in this paper. The main objection against such scenarios is the absence of conventional radiation and matter-dominated critical points in the phase space of the model. This entails that radiation and matter dominance are not generic solutions of the cosmological equations, so that these stages can be implemented only by means of unique and very specific initial conditions, i. e., of very unstable particular solutions. Such a behavior is in marked contradiction with the accepted cosmological paradigm which requires of an earlier stage dominated by relativistic species, followed by a period of conventional non-relativistic matter domination, during which the cosmic structure we see was formed. Also, we found that the bulk viscosity is positive just until very late times in the cosmic evolution, around z < 1. For earlier epochs it is negative, been in tension with the local second law of thermodynamics.

References (44)

  1. M. Heller, Z. Klimek and L. Suszycki, Imperfect fluid Friedmannian cosmology, Astrophys. Space Sci. 20 (1973) 205;
  2. W. Zimdahl, Bulk viscous cosmology, Phys. Rev. D 53 (1996) 5483 [astro-ph/9601189] [INSPIRE];
  3. R. Maartens and V. Mendez, Nonlinear bulk viscosity and inflation, Phys. Rev. D 55 (1997) 1937 [astro-ph/9611205] [INSPIRE];
  4. A. Tawfik, M. Wahba, H. Mansour and T. Harko, Hubble Parameter in QCD Universe for finite Bulk Viscosity, Annalen Phys. 522 (2010) 912 [arXiv:1008.0971] [INSPIRE];
  5. A. Tawfik, The Hubble parameter in the early universe with viscous QCD matter and finite cosmological constant, Annalen Phys. 523 (2011) 423 [arXiv:1102.2626] [INSPIRE].
  6. W. Hiscock and J. Salmonson, Dissipative Boltzmann-Robertson-Walker cosmologies, Phys. Rev. D 43 (1991) 3249 [INSPIRE].
  7. G. Kremer and F. Devecchi, Viscous cosmological models and accelerated universes, Phys. Rev. D 67 (2003) 047301 [gr-qc/0212046] [INSPIRE];
  8. M. Cataldo, N. Cruz and S. Lepe, Viscous dark energy and phantom evolution, Phys. Lett. B 619 (2005) 5 [hep-th/0506153] [INSPIRE];
  9. J.C. Fabris, S. Goncalves and R. de Sa Ribeiro, Bulk viscosity driving the acceleration of the Universe, Gen. Rel. Grav. 38 (2006) 495 [astro-ph/0503362] [INSPIRE];
  10. I.H. Brevik and O. Gorbunova, Dark energy and viscous cosmology, Gen. Rel. Grav. 37 (2005) 2039 [gr-qc/0504001] [INSPIRE];
  11. M.-G. Hu and X.-H. Meng, Bulk viscous cosmology: statefinder and entropy, Phys. Lett. B 635 (2006) 186 [astro-ph/0511615] [INSPIRE];Cosmological model with viscosity media (dark fluid) described by an effective equation of state, Phys. Lett. B 633 (2006) 1 [astro-ph/0511163] [INSPIRE];
  12. J. Ren and X.-H. Meng, Modified equation of state, scalar field and bulk viscosity in Friedmann universe, Phys. Lett. B 636 (2006) 5 [astro-ph/0602462] [INSPIRE];
  13. M. Szydlowski and O. Hrycyna, Dissipative or conservative cosmology with dark energy?, Annals Phys. 322 (2007) 2745 [astro-ph/0602118] [INSPIRE];
  14. P. Debnath, B. Paul and A. Beesham, Viscous cosmologies with variable Lambda in higher derivative gravity, Phys. Rev. D 76 (2007) 123505 [INSPIRE];
  15. R. Colistete, J. Fabris, J. Tossa and W. Zimdahl, Bulk Viscous Cosmology, Phys. Rev. D 76 (2007) 103516 [arXiv:0706.4086] [INSPIRE];
  16. C. Singh, S. Kumar and A. Pradhan, Early viscous universe with variable gravitational and cosmological 'constants', Class. Quant. Grav. 24 (2007) 455 [INSPIRE];
  17. X.H. Meng and X. Dou, Friedmann cosmology with bulk viscosity: a concrete model for dark energy, Commun. Theor. Phys. 52 (2009) 377 [arXiv:0812.4904] [INSPIRE];
  18. S. Capozziello, V. Cardone, E. Elizalde, S. Nojiri and S. Odintsov, Observational constraints on dark energy with generalized equations of state, Phys. Rev. D 73 (2006) 043512 [astro-ph/0508350] [INSPIRE];
  19. A. Montiel and N. Breton, Probing bulk viscous matter-dominated models with Gamma-ray bursts, JCAP 08 (2011) 023 [arXiv:1107.0271] [INSPIRE].
  20. W. Zimdahl, Cosmological particle production, causal thermodynamics and inflationary expansion, Phys. Rev. D 61 (2000) 083511 [astro-ph/9910483] [INSPIRE];
  21. W. Zimdahl, D.J. Schwarz, A.B. Balakin and D. Pavon, Cosmic anti-friction and accelerated expansion, Phys. Rev. D 64 (2001) 063501 [astro-ph/0009353] [INSPIRE];
  22. G. Mathews, N. Lan and C. Kolda, Late Decaying Dark Matter, Bulk Viscosity and the Cosmic Acceleration, Phys. Rev. D 78 (2008) 043525 [arXiv:0801.0853] [INSPIRE].
  23. J.R. Wilson, G.J. Mathews and G.M. Fuller, Bulk Viscosity, Decaying Dark Matter and the Cosmic Acceleration, Phys. Rev. D 75 (2007) 043521 [astro-ph/0609687] [INSPIRE].
  24. H. Okumura and Yonezawa F., New expression of the bulk viscosity, Phys. A 321 (2003) 207;
  25. P. Ilg and H.C. Ottinger, Nonequilibrium relativistic thermodynamics in bulk viscous cosmology, Phys. Rev. D 61 (2000) 023510 [INSPIRE];
  26. X. Chen and E. Spiegel, Radiative bulk viscosity, Mon. Not. Roy. Astron. Soc. 323 (2001) 865 [astro-ph/0102022] [INSPIRE].
  27. A. Avelino and U. Nucamendi, Exploring a matter-dominated model with bulk viscosity to drive the accelerated expansion of the Universe, JCAP 08 (2010) 009 [arXiv:1002.3605] [INSPIRE].
  28. A. Avelino and U. Nucamendi, Can a matter-dominated model with constant bulk viscosity drive the accelerated expansion of the universe?, JCAP 04 (2009) 006 [arXiv:0811.3253] [INSPIRE].
  29. S. Weinberg, Entropy generation and the survival of protogalaxies in an expanding universe, Astrophys. J. 168 (1971) 175 [INSPIRE];
  30. C.W. Misner, K.S. Thorne and J.A. Wheeler, Gravitation, W.H. Freeman and Company (1973) pg. 567;
  31. S. Hofmann, D.J. Schwarz and H. Stoecker, Damping scales of neutralino cold dark matter, Phys. Rev. D 64 (2001) 083507 [astro-ph/0104173] [INSPIRE].
  32. C. Eckart, The Thermodynamics of irreversible processes. 3. Relativistic theory of the simple fluid, Phys. Rev. 58 (1940) 919 [INSPIRE].
  33. L.D. Landau and E.M. Lifshift , Fluid Mechanics, Addison-Wesley, Reading, U.S.A. (1958).
  34. N. Suzuki, D. Rubin, C. Lidman, G. Aldering, R. Amanullah et al., The Hubble Space Telescope Cluster Supernova Survey: V. Improving the Dark Energy Constraints Above z¿1 and Building an Early-Type-Hosted Supernova Sample, Astrophys. J. 746 (2012) 85 [arXiv:1105.3470] [INSPIRE].
  35. L. Amendola, Coupled quintessence, Phys. Rev. D 62 (2000) 043511 [astro-ph/9908023] [INSPIRE];
  36. L. Amendola, Scaling solutions in general nonminimal coupling theories, Phys. Rev. D 60 (1999) 043501 [astro-ph/9904120] [INSPIRE].
  37. N.G. Busca, T. Delubac, J. Rich, S. Bailey, A. Font-Ribera et al., Baryon Acoustic Oscillations in the Ly-α forest of BOSS quasars, Astron. Astrophys. 552 (2013) A96 [arXiv:1211.2616] [INSPIRE].
  38. C. Blake, K. Glazebrook, T. Davis, S. Brough, M. Colless et al., The WiggleZ Dark Energy Survey: measuring the cosmic expansion history using the Alcock-Paczynski test and distant supernovae, Mon. Not. Roy. Astron. Soc. 418 (2011) 1725 [arXiv:1108.2637] [INSPIRE].
  39. C. Blake, S. Brough, M. Colless, C. Contreras, W. Couch et al., The WiggleZ Dark Energy Survey: Joint measurements of the expansion and growth history at z < 1, Mon. Not. Roy. Astron. Soc. 425 (2012) 405 [arXiv:1204.3674] [INSPIRE];
  40. C.-H. Chuang and Y. Wang, Measurements of H(z) and D A (z) from the Two-Dimensional Two-Point Correlation Function of Sloan Digital Sky Survey Luminous Red Galaxies, Mon. Not. Roy. Astron. Soc. 426 (2012) 226 [arXiv:1102.2251] [INSPIRE];
  41. B.A. Reid, L. Samushia, M. White, W.J. Percival, M. Manera et al., The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measurements of the growth of structure and expansion rate at z=0.57 from anisotropic clustering, arXiv:1203.6641 [INSPIRE];
  42. X. Xu, A.J. Cuesta, N. Padmanabhan, D.J. Eisenstein and C.K. McBride, Measuring D A and H at z=0.35 from the SDSS DR7 LRGs using baryon acoustic oscillations, arXiv:1206.6732 [INSPIRE].
  43. A.G. Riess, L. Macri, S. Casertano, H. Lampeitl, H.C. Ferguson et al., A 3% Solution: Determination of the Hubble Constant with the Hubble Space Telescope and Wide Field Camera 3, Astrophys. J. 730 (2011) 119 [Erratum ibid. 732 (2011) 129] [arXiv:1103.2976] [INSPIRE].
  44. H. Berendsen, a student's guide to Data and Error Analysis, Cambridge University Press (2011) [ISBN:978-0-521-11940-5].