Bayesian analysis of bulk viscous matter dominated universe
The European Physical Journal C
https://doi.org/10.1140/EPJC/S10052-018-6105-5Abstract
In our previous works, we have analyzed the evolution of bulk viscous matter dominated universe with a more general form for bulk viscous coefficient, ζ = ζ 0 +ζ 1ȧ a +ζ 2ä a and also carried out the dynamical system analysis. We found that the model reasonably describes the evolution of the universe if the viscous coefficient is a constant. In the present work we are contrasting this model with the standard ΛCDM model of the universe using the Bayesian method. We have shown that, even though the viscous model gives a reasonable back ground evolution of the universe, the Bayes factor of the model indicates that, it is not so superior over the ΛCDM model, but have a slight advantage over it.
References (59)
- A.G. Riess et al., Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998)
- S. Perlmutter et al., Measurements of Ω and Λ from 42 high- redshift supernovae. Astrophys. J. 517, 565 (1999)
- C.L. Bennett et al., First-year wilkinson microwave anisotropy probe (WMAP) observations: preliminary maps and basic results. Astrophys. J. Suppl. Ser. 148, 1 (2003)
- N. Tegmark et al., Cosmological parameters from SDSS and WMAP. Phys. Rev. D 69, 103501 (2004)
- U. Seljak et al., Cosmological parameter analysis including SDSS Lyα forest and galaxy bias: constraints on the primordial spectrum of fluctuations, neutrino mass, and dark energy. Phys. Rev. D 71, 103515 (2005)
- E. Komatsu et al., Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation. Astro- phys. J. Suppl. Ser. 192, 18 (2011)
- S. Weinberg, The cosmological constant problem. Rev. Mod. Phys. 61, 1 (1989)
- Y. Fujii, Origin of the gravitational constant and particle masses in a scale-invariant scalar-tensor theory. Phys. Rev. D 26, 2580 (1982)
- S.M. Carroll, Quintessence and the rest of the world: suppressing long-range interactions. Phys. Rev. Lett. 81, 3067 (1998)
- L.H. Ford, Cosmological-constant damping by unstable scalar fields. Phys. Rev. D 35, 2339 (1987)
- E.J. Copeland, A.R. Liddle, D. Wands, Exponential potentials and cosmological scaling solutions. Phys. Rev. D 57, 4686 (1998)
- T. Chiba, T. Okabe, M. Yamaguchi, Kinetically driven quintessence. Phys. Rev. D 62, 023511 (2000)
- C. Armendariz-Picon, V. Mukhanov, P.J. Steinhardt, Dynamical solution to the problem of a small cosmological constant and late- time cosmic acceleration. Phys. Rev. Lett. 85, 4438 (2000)
- E.J. Copeland, M. Sami, S. Tsujikawa, Dynamics of dark energy. Int. J. Mod Phys D 15, 1753 (2006)
- A. Kamenshchik, U. Moschella, V. Pasquier, An alternative to quintessence. Phys. Lett. B 511, 265 (2001)
- M.C. Bento, O. Bertolami, A.A. Sen, Generalized Chaplygin gas, accelerated expansion, and dark-energy-matter unification. Phys. Rev. D 66, 043507 (2002)
- S. Capozziello, Curvature quintessence. Int. J. Mod Phys D 11, 483 (2002)
- T.P. Sotiriou, V. Faraoni, f (R) theories of gravity. Rev. Mod. Phys. 82, 451 (2010)
- S. Nojiri, S.D. Odintsov, V.K. Oikonomou, Modified gravity theo- ries on a nut shell:Inflation, bounce and late-time evolution. Phys. Rep. 692, 1 (2017)
- R. Ferraro, F. Fiorini, Modified teleparallel gravity: inflation with- out an inflation. Phys. Rev. D 75, 084031 (2007)
- R. Myrzakulov, Accelerating universe from F(T) gravity. Eur. Phys. J. C 71, 1752 (2011)
- S. Nojiri, S.D. Odintsov, M. Sasaki, Gauss-Bonnet dark energy. Phys. Rev. D 71, 123509 (2005)
- T. Padmanabhan, D. Kothawala, Lanczos-Lovelock models of gravity. Phys. Rep. 531, 115 (2013)
- P. Hořava, Quantum gravity at a Lifshitz point. Phys. Rev. D 79, 084008 (2009)
- L. Amendola, Scaling solutions in general nonminimal coupling theories. Phys. Rev. D 60, 043501 (1999)
- G. Dvali, G. Gabadadze, M. Porrati, 4D gravity on a brane in 5D Minkowski space. Phys. Lett. B 485, 208 (2000)
- T. Padmanabhan, S.M. Chitre, Viscous universes. Phys. Lett. A 120, 433 (1987)
- I. Waga, R.C. Falcão, R. Chanda, Bulk-viscosity-driven inflation- ary model. Phys. Rev. D 33, 1839 (1986)
- B. Cheng, Bulk viscosity in the early universe. Phys. Lett. A 160, 329 (1991)
- W. Zimdahl, Bulk viscous cosmology. Phys. Rev. D 53, 5483 (1996)
- O. Gron, Viscous inflationary universe models. Astrophys. Space Sci. 173, 191 (1990)
- J.C. Fabris, S.V.B. Gonalves, R. de S Ribeiro, Bulk viscosity driv- ing the acceleration of the Universe. Gen. Relat. Gravit. 38, 495 (2006)
- B. Li, J.D. Barrow, Does bulk viscosity create a viable unified dark matter model? Phys. Rev. D 79, 103521 (2009)
- W.S. Hipólito-Ricaldi, H.E.S. Velten, W. Zimdahl, Viscous dark fluid universe. Phys. Rev. D 82, 063507 (2010)
- A. Avelino, U. Nucamendi, Can a matter-dominated model with constant bulk viscosity drive the accelerated expansion of the uni- verse? JCAP 04, 006 (2009)
- A. Avelino, U. Nucamendi, Exploring a matter-dominated model with bulk viscosity to drive the accelerated expansion of the Uni- verse. JCAP 08, 009 (2010)
- N.D.J. Mohan, A. Sasidharan, T.K. Mathew, Bulk viscous matter and recent acceleration of the universe based on causal viscous theory. Eur. Phys. J. C 77, 849 (2017)
- S. Anand et al., Cosmic viscosity as a remedy for tension between PLANCK and LSS data. JCAP 11, 005 (2017)
- A. Sasidharan, T.K. Mathew, Bulk viscous matter and recent accel- eration of the universe. Eur. Phys. J. C 75, 348 (2015)
- A. Avelino et al., Bulk viscous matter-dominated Universes: asymptotic properties. JCAP 08, 12 (2013)
- A. Sasidharan, T.K. Mathew, Phase space analysis of bulk viscous matter dominated universe. JHEP 06, 138 (2016)
- A.R. Liddle, How many cosmological parameters. Mon. Not. R. Astron. Soc. 351, L49 (2004)
- A.R. Liddle, Information criteria for astrophysical model selection. Mon. Not. R. Astron. Soc. 377, L74 (2007)
- T.M. Davis et al., Scrutinizing exotic cosmological models using ESSENCE supernova data combined with other cosmological probes. Astrophys. J. 666, 716 (2007)
- A. Kurek, M. Szydxyowski, The ΛCDM model in the lead-a Bayesian cosmological model comparison. Astrophys. J. 675, 1 (2008)
- D.J. Mortlock, Bayesian model comparison in cosmology (2015). arXiv:1503.03414v1 [astro-ph.CO]
- B. Santos, N.C. Devi, J.S. Alcaniz, Bayesian comparison of non- standard cosmologies using type Ia supernovae and BAO data. Phys. Rev. D. 95, 123514 (2017)
- M.V. John, J.V. Narlikar, Comparison of cosmological models using Bayesian theory. Phys. Rev. D. 65, 043506 (2002)
- P.S. Drell, T.J. Lorendo, I. Wasserman, Type Ia supernovae, evolu- tion, and the cosmological constant. Astrophys. J. 530, 593 (2000)
- M.V. John, Cosmography, decelerating past, and cosmological models: learning the Bayesian way. Astrophys. J. 630, 667 (2005)
- A. Jaffe, H 0 and odds on cosmology. Astrophys. J. 471, 24 (1996)
- M.P. Hobson, S.L. Bridle, O. Lahav, Combining cosmological datasets: hyperparameters and Bayesian evidence. Mon. Not. R. Astron. Soc. 335, 377 (2002)
- R.T. Bayes, An essay toward solving a problem in the doctrine of chances. Philos. Trans. R. Soc. 53, 370 (1763)
- R.E. Kass, A.E. Raftery, Bayes factors. J. Am. Stat. Assoc. 90, 773 (1995)
- C. Eckart, The thermodynamics of irreversible processes. III. Rel- ativistic theory of the simple fluid. Phys. Rev. 58, 919 (1940)
- J. Ren, X.-H. Meng, Cosmological model with viscosity media (dark fluid) described by an effective equation of state. Phys. Lett. B 633, 1 (2006)
- J.P. Singh, P. Singh, R. Bali, Bulk viscosity and decaying vacuum density in Friedmann universe. Int. J. Theor. Phys. 51, 3828 (2012)
- M. Kowalski, Improved cosmological constraints from new, old, and combined supernova data sets. Astrophys. J. 686, 749 (2008)
- B. Schwarzschild, High-redshift supernovae reveal an epoch when cosmic expansion was slowing down. Phys. Today 57(6), 19 (2004)