Academia.eduAcademia.edu

Outline

Bayesian analysis of bulk viscous matter dominated universe

The European Physical Journal C

https://doi.org/10.1140/EPJC/S10052-018-6105-5

Abstract

In our previous works, we have analyzed the evolution of bulk viscous matter dominated universe with a more general form for bulk viscous coefficient, ζ = ζ 0 +ζ 1ȧ a +ζ 2ä a and also carried out the dynamical system analysis. We found that the model reasonably describes the evolution of the universe if the viscous coefficient is a constant. In the present work we are contrasting this model with the standard ΛCDM model of the universe using the Bayesian method. We have shown that, even though the viscous model gives a reasonable back ground evolution of the universe, the Bayes factor of the model indicates that, it is not so superior over the ΛCDM model, but have a slight advantage over it.

References (59)

  1. A.G. Riess et al., Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998)
  2. S. Perlmutter et al., Measurements of Ω and Λ from 42 high- redshift supernovae. Astrophys. J. 517, 565 (1999)
  3. C.L. Bennett et al., First-year wilkinson microwave anisotropy probe (WMAP) observations: preliminary maps and basic results. Astrophys. J. Suppl. Ser. 148, 1 (2003)
  4. N. Tegmark et al., Cosmological parameters from SDSS and WMAP. Phys. Rev. D 69, 103501 (2004)
  5. U. Seljak et al., Cosmological parameter analysis including SDSS Lyα forest and galaxy bias: constraints on the primordial spectrum of fluctuations, neutrino mass, and dark energy. Phys. Rev. D 71, 103515 (2005)
  6. E. Komatsu et al., Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation. Astro- phys. J. Suppl. Ser. 192, 18 (2011)
  7. S. Weinberg, The cosmological constant problem. Rev. Mod. Phys. 61, 1 (1989)
  8. Y. Fujii, Origin of the gravitational constant and particle masses in a scale-invariant scalar-tensor theory. Phys. Rev. D 26, 2580 (1982)
  9. S.M. Carroll, Quintessence and the rest of the world: suppressing long-range interactions. Phys. Rev. Lett. 81, 3067 (1998)
  10. L.H. Ford, Cosmological-constant damping by unstable scalar fields. Phys. Rev. D 35, 2339 (1987)
  11. E.J. Copeland, A.R. Liddle, D. Wands, Exponential potentials and cosmological scaling solutions. Phys. Rev. D 57, 4686 (1998)
  12. T. Chiba, T. Okabe, M. Yamaguchi, Kinetically driven quintessence. Phys. Rev. D 62, 023511 (2000)
  13. C. Armendariz-Picon, V. Mukhanov, P.J. Steinhardt, Dynamical solution to the problem of a small cosmological constant and late- time cosmic acceleration. Phys. Rev. Lett. 85, 4438 (2000)
  14. E.J. Copeland, M. Sami, S. Tsujikawa, Dynamics of dark energy. Int. J. Mod Phys D 15, 1753 (2006)
  15. A. Kamenshchik, U. Moschella, V. Pasquier, An alternative to quintessence. Phys. Lett. B 511, 265 (2001)
  16. M.C. Bento, O. Bertolami, A.A. Sen, Generalized Chaplygin gas, accelerated expansion, and dark-energy-matter unification. Phys. Rev. D 66, 043507 (2002)
  17. S. Capozziello, Curvature quintessence. Int. J. Mod Phys D 11, 483 (2002)
  18. T.P. Sotiriou, V. Faraoni, f (R) theories of gravity. Rev. Mod. Phys. 82, 451 (2010)
  19. S. Nojiri, S.D. Odintsov, V.K. Oikonomou, Modified gravity theo- ries on a nut shell:Inflation, bounce and late-time evolution. Phys. Rep. 692, 1 (2017)
  20. R. Ferraro, F. Fiorini, Modified teleparallel gravity: inflation with- out an inflation. Phys. Rev. D 75, 084031 (2007)
  21. R. Myrzakulov, Accelerating universe from F(T) gravity. Eur. Phys. J. C 71, 1752 (2011)
  22. S. Nojiri, S.D. Odintsov, M. Sasaki, Gauss-Bonnet dark energy. Phys. Rev. D 71, 123509 (2005)
  23. T. Padmanabhan, D. Kothawala, Lanczos-Lovelock models of gravity. Phys. Rep. 531, 115 (2013)
  24. P. Hořava, Quantum gravity at a Lifshitz point. Phys. Rev. D 79, 084008 (2009)
  25. L. Amendola, Scaling solutions in general nonminimal coupling theories. Phys. Rev. D 60, 043501 (1999)
  26. G. Dvali, G. Gabadadze, M. Porrati, 4D gravity on a brane in 5D Minkowski space. Phys. Lett. B 485, 208 (2000)
  27. T. Padmanabhan, S.M. Chitre, Viscous universes. Phys. Lett. A 120, 433 (1987)
  28. I. Waga, R.C. Falcão, R. Chanda, Bulk-viscosity-driven inflation- ary model. Phys. Rev. D 33, 1839 (1986)
  29. B. Cheng, Bulk viscosity in the early universe. Phys. Lett. A 160, 329 (1991)
  30. W. Zimdahl, Bulk viscous cosmology. Phys. Rev. D 53, 5483 (1996)
  31. O. Gron, Viscous inflationary universe models. Astrophys. Space Sci. 173, 191 (1990)
  32. J.C. Fabris, S.V.B. Gonalves, R. de S Ribeiro, Bulk viscosity driv- ing the acceleration of the Universe. Gen. Relat. Gravit. 38, 495 (2006)
  33. B. Li, J.D. Barrow, Does bulk viscosity create a viable unified dark matter model? Phys. Rev. D 79, 103521 (2009)
  34. W.S. Hipólito-Ricaldi, H.E.S. Velten, W. Zimdahl, Viscous dark fluid universe. Phys. Rev. D 82, 063507 (2010)
  35. A. Avelino, U. Nucamendi, Can a matter-dominated model with constant bulk viscosity drive the accelerated expansion of the uni- verse? JCAP 04, 006 (2009)
  36. A. Avelino, U. Nucamendi, Exploring a matter-dominated model with bulk viscosity to drive the accelerated expansion of the Uni- verse. JCAP 08, 009 (2010)
  37. N.D.J. Mohan, A. Sasidharan, T.K. Mathew, Bulk viscous matter and recent acceleration of the universe based on causal viscous theory. Eur. Phys. J. C 77, 849 (2017)
  38. S. Anand et al., Cosmic viscosity as a remedy for tension between PLANCK and LSS data. JCAP 11, 005 (2017)
  39. A. Sasidharan, T.K. Mathew, Bulk viscous matter and recent accel- eration of the universe. Eur. Phys. J. C 75, 348 (2015)
  40. A. Avelino et al., Bulk viscous matter-dominated Universes: asymptotic properties. JCAP 08, 12 (2013)
  41. A. Sasidharan, T.K. Mathew, Phase space analysis of bulk viscous matter dominated universe. JHEP 06, 138 (2016)
  42. A.R. Liddle, How many cosmological parameters. Mon. Not. R. Astron. Soc. 351, L49 (2004)
  43. A.R. Liddle, Information criteria for astrophysical model selection. Mon. Not. R. Astron. Soc. 377, L74 (2007)
  44. T.M. Davis et al., Scrutinizing exotic cosmological models using ESSENCE supernova data combined with other cosmological probes. Astrophys. J. 666, 716 (2007)
  45. A. Kurek, M. Szydxyowski, The ΛCDM model in the lead-a Bayesian cosmological model comparison. Astrophys. J. 675, 1 (2008)
  46. D.J. Mortlock, Bayesian model comparison in cosmology (2015). arXiv:1503.03414v1 [astro-ph.CO]
  47. B. Santos, N.C. Devi, J.S. Alcaniz, Bayesian comparison of non- standard cosmologies using type Ia supernovae and BAO data. Phys. Rev. D. 95, 123514 (2017)
  48. M.V. John, J.V. Narlikar, Comparison of cosmological models using Bayesian theory. Phys. Rev. D. 65, 043506 (2002)
  49. P.S. Drell, T.J. Lorendo, I. Wasserman, Type Ia supernovae, evolu- tion, and the cosmological constant. Astrophys. J. 530, 593 (2000)
  50. M.V. John, Cosmography, decelerating past, and cosmological models: learning the Bayesian way. Astrophys. J. 630, 667 (2005)
  51. A. Jaffe, H 0 and odds on cosmology. Astrophys. J. 471, 24 (1996)
  52. M.P. Hobson, S.L. Bridle, O. Lahav, Combining cosmological datasets: hyperparameters and Bayesian evidence. Mon. Not. R. Astron. Soc. 335, 377 (2002)
  53. R.T. Bayes, An essay toward solving a problem in the doctrine of chances. Philos. Trans. R. Soc. 53, 370 (1763)
  54. R.E. Kass, A.E. Raftery, Bayes factors. J. Am. Stat. Assoc. 90, 773 (1995)
  55. C. Eckart, The thermodynamics of irreversible processes. III. Rel- ativistic theory of the simple fluid. Phys. Rev. 58, 919 (1940)
  56. J. Ren, X.-H. Meng, Cosmological model with viscosity media (dark fluid) described by an effective equation of state. Phys. Lett. B 633, 1 (2006)
  57. J.P. Singh, P. Singh, R. Bali, Bulk viscosity and decaying vacuum density in Friedmann universe. Int. J. Theor. Phys. 51, 3828 (2012)
  58. M. Kowalski, Improved cosmological constraints from new, old, and combined supernova data sets. Astrophys. J. 686, 749 (2008)
  59. B. Schwarzschild, High-redshift supernovae reveal an epoch when cosmic expansion was slowing down. Phys. Today 57(6), 19 (2004)