Frobenius semisimplicity for convolution morphisms
Mathematische Zeitschrift
https://doi.org/10.1007/S00209-017-1946-4Abstract
This article concerns properties of mixed ℓ-adic complexes on varieties over finite fields, related to the action of the Frobenius automorphism. We establish a fiberwise criterion for the semisimplicity and Frobenius semisimplicity of the direct image complex under a proper morphism of varieties over a finite field. We conjecture that the direct image of the intersection complex on the domain is always semisimple and Frobenius semisimple; this conjecture would imply that a strong form of the decomposition theorem of Beilinson-Bernstein-Deligne-Gabber is valid over finite fields. We prove our conjecture for (generalized) convolution morphisms associated with partial affine flag varieties for split connected reductive groups over finite fields. As a crucial tool, we develop a new schematic theory of big cells for loop groups. With suitable reformulations, the main results are valid over any algebraically closed ground field. Contents MARK ANDREA DE CATALDO, THOMAS J. HAINES, AND LI LI 3.9. Uniform notation for the finite case G and for the affine case LG 3.10. Orbits and relative position 4. Twisted products and generalized convolutions 4.1. Twisted product varieties 4.2. Geometric P-Demazure product on P W P 4.3. Comparison of geometric and standard Demazure products 4.4. Connectedness of fibers of convolution morphisms 4.5. Generalized convolution morphisms p : X P (w •) → X Q (w ′′ I,•) 4.6. Relation of convolution morphisms to convolutions of perverse sheaves 5. Proofs of Theorems 2.1.1 and 2.1.2 and a semisimplicity question 5.1. The decomposition theorem over a finite field 5.2. Proof of the semisimplicity criterion Theorem 2.1.1 5.3. Proof that the intersection complex splits off Theorem 2.1.2 5.4. A semisimplicity conjecture 6. Proofs of Theorems 2.4.1, 2.2.1 and 2.2.2 6.1. Proof of the surjectivity for fibers criterion Theorem 2.4.1 6.2. Proof of Theorem 2.2.1 6.3. Proof of Theorem 2.2.2 7. Proof of the affine paving Theorem 2.5.2 7.1. Proof of the paving fibers of Demazure maps Theorem 2.5.2.(1) 7.2. Proof of the paving Theorem 2.5.2.(2) 7.3. Proof of Theorem 2.5.2.(3) 7.4. Proof of Corollary 2.2.3 via paving 8. Remarks on the Kac-Moody setting and results over other fields k 8.1. Remarks on the Kac-Moody setting 8.2. Results over other fields k References
References (45)
- P.N. Achar, S. Riche, Koszul duality and semisimplicity of Frobenius, Ann. Inst. Fourier, Greno- ble 63 (2013), 1511-1612. 4, 7, 8, 51, 52
- A. Beauville, Y. Laszlo, Conformal blocks and generalized theta functions, Com- mun. Math. Phys. 164, 385-419 (1994). 4, 11, 25
- A. Beilinson, I.N. Bernstein, P. Deligne, Faisceaux Pervers, Astérisque 100, (1981). 2, 5, 7, 41
- A. Beilinson, V. Ginzburg, W. Soergel, Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9 (1996), no. 2, 473-527. 4, 8
- R. Bezrukavnikov, Z. Yun, On Koszul duality for Kac-Moody groups, Represent. Theory 17 (2013), 1-98. 4, 8, 51
- A. Bialynicki-Birula, Some theorems on actions of algebraic groups, Annals of Math. 98, no. 3 (1973), 480-497. 49
- F. Bruhat, J. Tits, Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d'une donnée radicielle valuée, Inst. Hautes Études Sci. Publ. Math. 60 (1984), 197-376. 13, 21, 23
- CGP] B. Conrad, O. Gabber, G. Prasad, Pseudo-reductive groups, new mathematical monographs: 17, Cambridge Univ. Press, 2010. 533 pp.+xix. 23, 24
- M.A. de Cataldo, The perverse filtration and the Lefschetz hyperplane theorem, II, J. Algebraic Geom. 21 (2012), no. 2, 305-345. 42
- M.A. de Cataldo, Proper toric maps over finite fields, to appear in I.M.R.N. 3, 4, 8, 41, 44, 46
- M.A. de Cataldo, L. Migliorini, and M. Mustat ¸ȃ, The combinatorics and topology of proper toric maps, to appear in Crelle's Journal. 9, 44
- A. J. de Jong, Smoothness, semi-stability and alterations, Publ. Math., de l'I.H. É.S, tome 83 (1996), 51-93. 43
- P. Deligne, La conjecture de Weil pour les surfaces K3, Inventiones Math. 15, (1972), 206-226. 3
- J. Denef, F. Loser, Weights of exponential sums, intersection cohomology, and Newton polyhedra, Invent. Math. 106 (1991), no. 2, 275?294. 44
- G. Faltings, Algebraic loop groups and moduli spaces of bundles, J. Eur. Math. Soc. 5, (2003), 41-68. 4, 10, 11, 24, 25, 27, 28
- W. Fulton, Intersection Theory, Ergebnisse. der Math. u. ihrer Grenzgebiete, 3. Folge, Band 2, Springer-Verlag. 1984. 470 pp. +xi. 47
- GH] U. Görtz, T. Haines, The Jordan-Hölder series for nearby cycles on some Shimura varieties and affine flag varieties , J. Reine Angew. Math. 609 (2007), 161-213. 9, 43, 50
- GW] U. Görtz, T. Wedhorn, Algebraic Geometry I: Schemes with Examples and Exercises, Vieweg+Teubner 2010, 615 pp. +vii. 36
- A. Grothendieck, J. Diéudonné, Éléments de Géométrie Algeébrique, III: Le Langage de schemas, Inst. Hautes Études Sci. Publ. Math. 4 (1960). 36
- A. Grothendieck, J. Diéudonné, Éléments de Géométrie Algeébrique, III: Étude cohomologique des faisceaux cohérents, Inst. Hautes Études Sci. Publ. Math. 11 (1961). 37
- A. Grothendieck, J. Diéudonné, Éléments de Géométrie Algeébrique, IV: Étude locale ded schémas e des morphismes de schémas, Seconde partie , Inst. Hautes Études Sci. Publ. Math. 24 (1965). 36
- T. Haines, A proof of the Kazhdan-Lusztig purity theorem via the decomposition theorem of BBD, note, around 2005. Available at www.math.umd.edu/∼tjh. 49
- T. Haines, Equidimensionality of convolution morphisms and applications to saturation problems, Adv. in Math. 207, no.1 (2006), 297-327. 11
- T. Haines, M. Rapoport, Appendix: On parahoric subgroups, Advances in Math. 219 (1), (2008), 188-198; appendix to: G. Pappas, M. Rapoport, Twisted loop groups and their affine flag vari- eties, Advances in Math. 219 (1), (2008), 118-198. 4, 11, 12, 22
- T. Haines, K. Wilson, A Tannakian description of Bruhat-Tits buildings and parahoric group schemes, in preparation. 21, 22
- W. H. Hesselink, Concentration under actions of algebraic groups. In Paul Dubreil and Marie- Paule Malliavin Algebra Seminar, 33rd Year (Paris, 1980), volume 867 of Lecture Notes in Math., pages 55-89. Springer, Berlin, 1981. 49
- J.E. Humphreys, Linear Algebraic Groups, GTM 21, Springer-Verlag, 1975 (corrected 4th print- ing, 1995). 253 pp. +xvi. 12, 21
- J.E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Adv. Math. 29, Cambridge Univ. Press. 1990. 204 pp. +xii. 33
- D. Kazhdan, G. Lusztig, Schubert varieties and Poincaré duality, Proc. Symp. Pure Math. 36 (1980) 185-203. 5, 9, 44
- S. Kumar, Kac-Moody groups, their flag varieties and representation theory, Progress in Math. 204, Birkhäuser 2002, 606 pp.+xiv. 51
- P. Littelmann, Contracting modules and standard monomial theory for symmetrizable Kac-Moody algebras, J. Amer. Math. Soc., 11, (1998), 551-567. 51
- G. Lusztig, Cells in affine Weyl groups and tensor categories, Adv. Math. 129, (1997), 85-98. 40
- O. Mathieu, Formules de caractères pour les algèbres de Kac-Moody générales, Astérisque 159- 160, (1988). 51
- O. Mathieu, Construction d'un groupe de Kac-Moody et applications, Compos. Math. 69(1), (1989), 37-60. 4, 51
- J.S. Milne, Étale Cohomology, Princeton Math. Series 33, Princeton Univ. Press, 1980. 323 pp. +xiii. 43
- D. Mumford, Abelian varieties, Oxford University Press, 1974. 3
- M. Olsson, Borel-Moore homology, Riemann-Roch transformations, and local terms, Advances in Math. 273 (2015), 56-123. 47
- G. Pappas, M. Rapoport, Twisted loop groups and their affine flag varieties, Advances in Math. 219 (2008), no. 1, 118-198. 4, 11, 13, 14, 22, 23, 27, 28
- T. Richarz, Schubert varieties in twisted affine flag varieties and local models, J. Algebra 375 (2013), 121-147. 14
- P. Slodowy, Singularitäten, Kac-Moody-Liealgebren, Assoziierte Gruppen und Verallgemeinerun- gen, Habilitationsschrift, Universität Bonn, 1984. 51
- T. A. Springer, A purity result for fixed point varieties in flag manifolds, J. Fac. Sci. Univ. Tokyo, Sect. IA, Math. 31 (1984), 271-282. 44
- T. A. Springer, Linear Algebraic Groups, 2nd ed. Progress in Math. vol. 9, Birkhäuser, 1998. 11, 15
- J. Tits, Définition par générators et relations de groups BN -paires, C. R. Acad. Sci. Paris 293 (1981), 317-322. 51
- J. Tits, Annuaire Collège de France 81, 1980-81, pp. 75-87. 51
- Wilson, Kevin Michael, Jr; A Tannakian description for parahoric Bruhat-Tits group schemes. Thesis (Ph.D.)-University of Maryland, College Park. 2010. 112 pp. ISBN: 978-1124-07345-3, ProQuest LLC 21, 22