Academia.eduAcademia.edu

Outline

Algebraic Geometry – An Introduction . Daniel Perrin

https://doi.org/10.1007/978-1-84800-056-8

Abstract

prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers. The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant laws and regulations and therefore free for general use. The publisher makes no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that may be made.

References (44)

  1. The incidence variety and applications Let d be a positive integer and let R d = H 0 (P 3 , O P 3 (d)) be the vector space of homogeneous polynomials of degree d in X, Y, Z, T . We identify the space of degree d surfaces in P 3 with the projective space P(R d ).
  2. What is the dimension of P(R d )? We set V d = {(D, F ) ∈ G × P(R d ) | D ⊂ F } and denote by π (resp. p) the projection of V d onto P(R d ) (resp. onto G).
  3. Let H be a plane of equation αX + βY + γZ + δT = 0 and let D be a line which is not contained in H. Determine both the homogeneous coordinates of the point of intersection of D and H as a function of α, β, γ, δ and the Plücker coordinates of D. What happens when D ⊂ H?
  4. Prove that V d is a closed subvariety of G × P(R d ), called the incidence variety (use 1), for example, and let the plane H vary). Prove that the projections π and p are closed maps (i.e., they send closed sets to closed sets).
  5. Determine the fibres p -1 (D) for any D ∈ G (use Riemann-Roch). Deduce that p is surjective and V d is irreducible. Calculate the dimension of V d .
  6. Assume d 4. Prove that π is not dominant. Deduce that there is a non-empty open set in P(R d ) consisting of surfaces which do not contain any line. (We say that the "general" surface of degree 4 does not contain a line.)
  7. Assume d = 3. Prove there are only a finite number of lines in the surface XY Z -T 3 = 0. (You may either use a direct argument or use 1) and 2) above.) Deduce that π is surjective and that a general cubic surface contains a finite number of lines. Study the surface XY Z + T (X 2 + Y 2 + Z 2 ) -T 3 = 0. (Start by proving that the lines which do not meet the line X = T = 0 are defined by equations of the form Y = aX + bT , Z = cX + dT .)
  8. What happens when d = 1?
  9. We take d = 2. Determine the Plücker coordinates of the lines contained in the quadric of equation XY -ZT = 0. Prove they form a closed one-dimensional subset of G. Deduce that π is surjective. Are the fibres of π all of the same dimension? References
  10. E. Ballico, G. Bolondi & J. Migliore -The Lazarsfeld-Rao problem for liaison classes of two-codimensional subschemes of P n , Amer. J. Math. 113 (1991), p. 117-128.
  11. N. Bourbaki -Elements of Mathematics. Commutative Algebra. Chapters 1-7, Springer, Berlin, 1998.
  12. A. Grothendieck & J. Dieudonné -Éléments de géométrie algébrique, vol. 4, 8, 11, 17, 20, 24, 28, 32, Publications Mathématiques de l'IH ÉS.
  13. C. Godbillon -Topologie algébrique, Hermann, Paris, 1971.
  14. R. Godement -Topologie algébrique et théorie des faisceaux, Hermann, Paris, 1958.
  15. A. Gramain -Topology of surfaces, BCS Associates, Moscow, ID, 1984, (French edition: 1971).
  16. L. Gruson & C. Peskine -Genre des courbes de l'espace projectif (II), Ann. Sci. École Norm. Sup. (4) 15 (1982), p. 401-418.
  17. R. Hartshorne -Algebraic Geometry, Springer, Berlin, 1977.
  18. S. Lang -Algebra, Addison-Wesley, Reading, MA, 1965.
  19. M. Martin-Deschamps & D. Perrin -Sur la classification des courbes gauches, Astérisque, vol. 184-185, Société Mathématique de France, Paris, 1990.
  20. H. Matsumura -Commutative Algebra, Benjamin, 1970.
  21. D. Mumford -The Red Book of Varieties and Schemes, Lect. Notes in Math., vol. 1358, Springer, 1988.
  22. D. Perrin -Cours d'algèbre, Ellipses, Paris, 1996.
  23. C. Peskine -An algebraic introduction to complex projective geome- try. 1, Cambridge Studies in Advanced Mathematics, vol. 47, Cambridge University Press, Cambridge, 1996.
  24. C. Peskine & L. Szpiro -Liaison des variétés algébriques, Invent. Math. 26 (1974), p. 271-302.
  25. A.P. Rao -Liaison among curves in P 3 , Invent. Math. 50 (1979), p. 205- 217.
  26. W. Rudin -Real and complex analysis, McGraw-Hill, New York, NY, 1974. References
  27. P. Samuel -Algebraic theory of numbers, Houghton Mifflin, Boston, 1970 (French edition: 1967).
  28. I.R. Shafarevich -Basic Algebraic Geometry, Springer, 1977.
  29. A. Grothendieck -Sur quelques points d'algèbre homologique, Tôhoku Math. J. 9 (1957), p. 119-221.
  30. Universitext Aguilar, M.; Gitler, S.; Prieto, C.: Algebraic Topology from a Homotopical Viewpoint Aksoy, A.; Khamsi, M. A.: Methods in Fixed Point Theory Alevras, D.; Padberg M. W.: Linear Opti- mization and Extensions Andersson, M.: Topics in Complex Analysis Aoki, M.: State Space Modeling of Time Series Arnold, V. I.: Lectures on Partial Differen- tial Equations
  31. Arnold, V. I.; Cooke, R.: Ordinary Differen- tial Equations
  32. Audin, M.: Geometry Aupetit, B.: A Primer on Spectral Theory Bachem, A.; Kern, W.: Linear Programming Duality Bachmann, G.; Narici, L.; Beckenstein, E.: Fourier and Wavelet Analysis Badescu, L.: Algebraic Surfaces
  33. Balakrishnan, R.; Ranganathan, K.: A Text- book of Graph Theory Balser, W.: Formal Power Series and Linear Systems of Meromorphic Ordinary Differ- ential Equations
  34. Bapat, R.B.: Linear Algebra and Linear Models Benedetti, R.; Petronio, C.: Lectures on Hy- perbolic Geometry
  35. Benth, F. E.: Option Theory with Stochastic Analysis Berberian, S. K.: Fundamentals of Real Analysis Berger, M.: Geometry I, and II
  36. Bhattacharya, R., Waymire, E.C.: A Basic Course in Probability Theory Bliedtner, J.; Hansen, W.: Potential Theory Blowey, J. F.; Coleman, J. P.; Craig, A. W. (Eds.): Theory and Numerics of Differential Equations Blowey, J. F.; Craig, A.; Shardlow, T. (Eds.): Frontiers in Numerical Analysis, Durham 2002, and Durham 2004
  37. Blyth, T. S.: Lattices and Ordered Algebraic Structures Börger, E.; Grädel, E.; Gurevich, Y.: The Classical Decision Problem Böttcher, A; Silbermann, B.: Introduction to Large Truncated Toeplitz Matrices Boltyanski, V.; Martini, H.; Soltan, P. S.: Excursions into Combinatorial Geometry Boltyanskii, V. G.; Efremovich, V. A.: Intu- itive Combinatorial Topology Bonnans, J. F.; Gilbert, J. C.; Lemarchal, C.; Sagastizbal, C. A.: Numerical Optimization Booss, B.; Bleecker, D. D.: Topology and Analysis Borkar, V. S.: Probability Theory Bridges/Vita: Techniques of Constructive Analysis Brunt B. van: The Calculus of Variations Bühlmann, H.; Gisler, A.: A Course in Cred- ibility Theory and its Applications Carleson, L.; Gamelin, T. W.: Complex Dynamics Cecil, T. E.: Lie Sphere Geometry: With Applications of Submanifolds Chae, S. B.: Lebesgue Integration Chandrasekharan, K.: Classical Fourier Transform Charlap, L. S.: Bieberbach Groups and Flat Manifolds Chern, S.: Complex Manifolds without Potential Theory Chorin, A. J.; Marsden, J. E.: Mathematical Introduction to Fluid Mechanics Cohn, H.: A Classical Invitation to Alge- braic Numbers and Class Fields Curtis, M. L.: Abstract Linear Algebra Curtis, M. L.: Matrix Groups
  38. Cyganowski, S.; Kloeden, P.; Ombach, J.: From Elementary Probability to Stochastic Differential Equations with MAPLE Da Prato, G.: An Introduction to Infinite Dimensional Analysis Dalen, D. van: Logic and Structure Das, A.: The Special Theory of Relativity: A Mathematical Exposition Debarre, O.: Higher-Dimensional Algebraic Geometry Deitmar, A.: A First Course in Harmonic Analysis. 2 nd edition Demazure, M.: Bifurcations and Cata- strophes
  39. Devlin, K. J.: Fundamentals of Contempo- rary Set Theory
  40. DiBenedetto, E.: Degenerate Parabolic Equations Diener, F.; Diener, M.(Eds.): Nonstandard Analysis in Practice Dimca, A.: Sheaves in Topology Dimca, A.: Singularities and Topology of Hypersurfaces DoCarmo, M. P.: Differential Forms and Applications Duistermaat, J. J.; Kolk, J. A. C.: Lie Groups Dumortier.: Qualitative Theory of Planar Differential Systems Dundas, B. I.; Levine, M.; Østvaer, P. A.; Röndip, O.; Voevodsky, V.: Motivic Homo- topy Theory
  41. Edwards, R. E.: A Formal Background to Higher Mathematics Ia, and Ib Edwards, R. E.: A Formal Background to Higher Mathematics IIa, and IIb Emery, M.: Stochastic Calculus in Mani- folds Emmanouil, I.: Idempotent Matrices over Complex Group Algebras Endler, O.: Valuation Theory Engel, K.-J.; Nagel, R.: A Short Course on Operator Semigroups Erez, B.: Galois Modules in Arithmetic Everest, G.; Ward, T.: Heights of Polynomi- als and Entropy in Algebraic Dynamics Farenick, D. R.: Algebras of Linear Trans- formations Foulds, L. R.: Graph Theory Applications Franke, J.; Hrdle, W.; Hafner, C. M.: Statis- tics of Financial Markets: An Introduction Frauenthal, J. C.: Mathematical Modeling in Epidemiology Freitag, E.; Busam, R.: Complex Analysis Friedman, R.: Algebraic Surfaces and Holo- morphic Vector Bundles Fuks, D. B.; Rokhlin, V. A.: Beginner's Course in Topology Fuhrmann, P. A.: A Polynomial Approach to Linear Algebra Gallot, S.; Hulin, D.; Lafontaine, J.: Rie- mannian Geometry Gardiner, C. F.: A First Course in Group Meyer-Nieberg, P.: Banach Lattices Mikosch, T.: Non-Life Insurance Mathe- matics Mines, R.; Richman, F.; Ruitenburg, W.: A Course in Constructive Algebra Moise, E. E.: Introductory Problem Courses in Analysis and Topology Montesinos-Amilibia, J. M.: Classical Tes- sellations and Three Manifolds Morris, P.: Introduction to Game Theory Mortveit, H., Reidys, C.: An Introduction to Sequential Dynamical Systems Nicolaescu, L.: An Invitation to Morse Theory Nikulin, V. V.; Shafarevich, I. R.: Geome- tries and Groups Oden, J. J.; Reddy, J. N.: Variational Meth- ods in Theoretical Mechanics Øksendal, B.: Stochastic Differential Equa- tions Øksendal, B.; Sulem, A.: Applied Stochastic Control of Jump Diffusions. 2nd edition
  42. Orlik, P.; Welker, V.: Algebraic Combina- torics Perrin, D.: Algebraic Geometry: An intro- duction
  43. Poizat, B.: A Course in Model Theory Polster, B.: A Geometrical Picture Book Porter, J. R.; Woods, R. G.: Extensions and Absolutes of Hausdorff Spaces Procesi, C.: Lie Groups Radjavi, H.; Rosenthal, P.: Simultaneous Triangularization
  44. Ramsay, A.; Richtmeyer, R. D.: Introduc- tion to Hyperbolic Geometry Rautenberg, W.: A concise Introduction to Mathematical Logic Rees, E. G.: Notes on Geometry Reisel, R. B.: Elementary Theory of Metric Spaces Rey, W. J. J.: Introduction to Robust and Quasi-Robust Statistical Methods Ribenboim, P.: Classical Theory of Alge- braic Numbers Rickart, C. E.: Natural Function Algebras Rotman, J. J.: Galois Theory Rubel, L. A.: Entire and Meromorphic Functions Ruiz-Tolosa, J. R.; Castillo E.: From Vectors to Tensors Runde, V.: A Taste of Topology Rybakowski, K. P.: The Homotopy Index and Partial Differential Equations Sabbah, C.: Isomonodromic Deformations and Frobenius Manifolds: An introduction Sagan, H.: Space-Filling Curves Samelson, H.: Notes on Lie Algebras Sauvigny, F.: Partial Differential Equa- tions I Sauvigny, F.: Partial Differential Equa- tions II Schiff, J. L.: Normal Families Schirotzek, W.: Nonsmooth Analysis Sengupta, J. K.: Optimal Decisions under Uncertainty Séroul, R.: Programming for Mathemati- cians Seydel, R.: Tools for Computational Finance Shafarevich, I. R.: Discourses on Algebra Shapiro, J. H.: Composition Operators and Classical Function Theory Simonnet, M.: Measures and Probabilities Smith, K. E.; Kahanpää, L.; Kekäläinen, P.; Traves, W.: An Invitation to Algebraic Geometry Smith, K. T.: Power Series from a Computa- tional Point of View Smorynski: Self-Reference and Modal Logic Smoryński, C.: Logical Number Theory I. An Introduction Srivastava: A Course on Mathematical Logic Stichtenoth, H.: Algebraic Function Fields and Codes Stillwell, J.: Geometry of Surfaces Stroock, D. W.: An Introduction to the The- ory of Large Deviations Sunder, V. S.: An Invitation to von Neu- mann Algebras Tamme, G.: Introduction to Étale Cohomology Tondeur, P.: Foliations on Riemannian Manifolds Toth, G.: Finite Mbius Groups, Minimal Immersions of Spheres, and Moduli Tu, L. W.: An Introduction to Manifolds Verhulst, F.: Nonlinear Differential Equa- tions and Dynamical Systems Weintraub, S. H.: Galois Theory Wong, M. W.: Weyl Transforms Xambó-Descamps, S.: Block Error-Cor- recting Codes Zaanen, A.C.: Continuity, Integration and Fourier Theory Zhang, F.: Matrix Theory Zong, C.: Sphere Packings Zong, C.: Strange Phenomena in Convex and Discrete Geometry Zorich, V. A.: Mathematical Analysis I Zorich, V. A.: Mathematical Analysis II