Abstract
We solve Gromov's Vaserstein problem. Namely, we show that a nullhomotopic holomorphic mapping from a finite dimensional reduced Stein space into SLn(C) can be factored into a finite product of unipotent matrices with holomorphic entries.
References (23)
- P. M. Cohn, On the structure of the GL2 of a ring, Inst. Hautes Études Sci. Publ. Math. (1966), no. 30, 5-53.
- Y. Eliashberg and M. Gromov, Embeddings of Stein manifolds of dimension n into the affine space of dimension 3n/2 + 1, Ann. of Math. (2) 136 (1992), no. 1, 123-135.
- F. Forstnerič, The Oka principle for sections of stratified fiber bundles, Preprint, arXiv 0705.0591v4, 2008.
- F. Forstnerič and J. Prezelj, Extending holomorphic sections from complex subvarieties, Math. Z. 236 (2001), no. 1, 43-68.
- F. Forstnerič and J. Prezel, Oka's principle for holomorphic submersions with sprays, Math. Ann. 322 (2002), no. 4, 633-666.
- O. Forster, Topologische Methoden in der Theorie Steinscher Räume, Actes du Congrès Interna- tional des Mathématiciens (Nice, 1970), Tome 2, Gauthier-Villars, Paris 1971, pp. 613-618.
- O. Forster and K. J. Ramspott, Analytische Modulgarben und Endromisbündel, Invent. Math. 2 (1966), 145-170.
- O. Forster and K. J. Ramspott, Okasche Paare von Garben nicht-abelscher Gruppen, Invent. Math. 1 (1966), 260-286.
- O. Forster and K. J. Ramspott, Homotopieklassen von Idealbasen in Steinschen Algebren, Invent. Math. 5 (1968), 255-276.
- O. Forster and K. J. Ramspott, Über die Anzahl der Erzeugenden von projektiven Steinschen Moduln, Arch. Math. (Basel) 19 (1968), 417-422.
- F. Grunewald, J. Mennicke, and L. Vaserstein, On the groups SL2(Z[x]) and SL2(k[x, y]), Israel J. Math. 86 (1994), no. 1-3, 157-193.
- H. Grauert, Approximationssätze für holomorphe Funktionen mit Werten in komplexen Räumen, Math. Ann. 133 (1957), 139-159.
- H. Grauert, Holomorphe Funktionen mit Werten in komplexen Lieschen Gruppen, Math. Ann. 133 (1957), 450-472.
- H. Grauert, Analytische Faserungen über holomorph-vollständigen Räumen, Math. Ann. 135 (1958), 263-273.
- M. Gromov, Oka's principle for holomorphic sections of elliptic bundles, J. Amer. Math. Soc. 2 (1989), no. 4, 851-897.
- B. Ivarsson, F. Kutzschebauch, A solution of Gromov's Vaserstein problem, C.R. Acad. Sci., Paris doi:10.1016/j.crma.2008.10.017
- J. Rosenberg, Algebraic K-theory and its applications, Graduate Texts in Mathematics, vol. 147, Springer-Verlag, New York, 1994.
- J. Schürmann, Embeddings of Stein spaces into affine spaces of minimal dimension, Math. Ann. 307 (1997), no. 3, 381-399.
- A. A. Suslin, The structure of the special linear group over rings of polynomials, Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977), no. 2, 235-252, 477, (English translation, Math. USSR Izv. 11 (1977), 221-238.)
- W. Thurston and L. Vaserstein, On K1-theory of the Euclidean space, Topology Appl. 23 (1986), no. 2, 145-148.
- L. Vaserstein, Reduction of a matrix depending on parameters to a diagonal form by addition operations, Proc. Amer. Math. Soc. 103 (1988), no. 3, 741-746.
- W. van der Kallen, SL3(C[X]) does not have bounded word length, Algebraic K-theory, Part I (Oberwolfach, 1980), Lecture Notes in Math., vol. 966, Springer, Berlin, 1982, pp. 357-361.
- D. Wright, The amalgamated free product structure of GL2(k[X1, . . . , Xn]) and the weak Jacobian theorem for two variables, J. Pure Appl. Algebra 12 (1978), no. 3, 235-251.