Academia.eduAcademia.edu

Outline

Holomorphic factorization of mappings into SL_n(C)

2008

https://doi.org/10.4007/ANNALS.2012.175.1.3

Abstract

We solve Gromov's Vaserstein problem. Namely, we show that a nullhomotopic holomorphic mapping from a finite dimensional reduced Stein space into SLn(C) can be factored into a finite product of unipotent matrices with holomorphic entries.

References (23)

  1. P. M. Cohn, On the structure of the GL2 of a ring, Inst. Hautes Études Sci. Publ. Math. (1966), no. 30, 5-53.
  2. Y. Eliashberg and M. Gromov, Embeddings of Stein manifolds of dimension n into the affine space of dimension 3n/2 + 1, Ann. of Math. (2) 136 (1992), no. 1, 123-135.
  3. F. Forstnerič, The Oka principle for sections of stratified fiber bundles, Preprint, arXiv 0705.0591v4, 2008.
  4. F. Forstnerič and J. Prezelj, Extending holomorphic sections from complex subvarieties, Math. Z. 236 (2001), no. 1, 43-68.
  5. F. Forstnerič and J. Prezel, Oka's principle for holomorphic submersions with sprays, Math. Ann. 322 (2002), no. 4, 633-666.
  6. O. Forster, Topologische Methoden in der Theorie Steinscher Räume, Actes du Congrès Interna- tional des Mathématiciens (Nice, 1970), Tome 2, Gauthier-Villars, Paris 1971, pp. 613-618.
  7. O. Forster and K. J. Ramspott, Analytische Modulgarben und Endromisbündel, Invent. Math. 2 (1966), 145-170.
  8. O. Forster and K. J. Ramspott, Okasche Paare von Garben nicht-abelscher Gruppen, Invent. Math. 1 (1966), 260-286.
  9. O. Forster and K. J. Ramspott, Homotopieklassen von Idealbasen in Steinschen Algebren, Invent. Math. 5 (1968), 255-276.
  10. O. Forster and K. J. Ramspott, Über die Anzahl der Erzeugenden von projektiven Steinschen Moduln, Arch. Math. (Basel) 19 (1968), 417-422.
  11. F. Grunewald, J. Mennicke, and L. Vaserstein, On the groups SL2(Z[x]) and SL2(k[x, y]), Israel J. Math. 86 (1994), no. 1-3, 157-193.
  12. H. Grauert, Approximationssätze für holomorphe Funktionen mit Werten in komplexen Räumen, Math. Ann. 133 (1957), 139-159.
  13. H. Grauert, Holomorphe Funktionen mit Werten in komplexen Lieschen Gruppen, Math. Ann. 133 (1957), 450-472.
  14. H. Grauert, Analytische Faserungen über holomorph-vollständigen Räumen, Math. Ann. 135 (1958), 263-273.
  15. M. Gromov, Oka's principle for holomorphic sections of elliptic bundles, J. Amer. Math. Soc. 2 (1989), no. 4, 851-897.
  16. B. Ivarsson, F. Kutzschebauch, A solution of Gromov's Vaserstein problem, C.R. Acad. Sci., Paris doi:10.1016/j.crma.2008.10.017
  17. J. Rosenberg, Algebraic K-theory and its applications, Graduate Texts in Mathematics, vol. 147, Springer-Verlag, New York, 1994.
  18. J. Schürmann, Embeddings of Stein spaces into affine spaces of minimal dimension, Math. Ann. 307 (1997), no. 3, 381-399.
  19. A. A. Suslin, The structure of the special linear group over rings of polynomials, Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977), no. 2, 235-252, 477, (English translation, Math. USSR Izv. 11 (1977), 221-238.)
  20. W. Thurston and L. Vaserstein, On K1-theory of the Euclidean space, Topology Appl. 23 (1986), no. 2, 145-148.
  21. L. Vaserstein, Reduction of a matrix depending on parameters to a diagonal form by addition operations, Proc. Amer. Math. Soc. 103 (1988), no. 3, 741-746.
  22. W. van der Kallen, SL3(C[X]) does not have bounded word length, Algebraic K-theory, Part I (Oberwolfach, 1980), Lecture Notes in Math., vol. 966, Springer, Berlin, 1982, pp. 357-361.
  23. D. Wright, The amalgamated free product structure of GL2(k[X1, . . . , Xn]) and the weak Jacobian theorem for two variables, J. Pure Appl. Algebra 12 (1978), no. 3, 235-251.