Injective factorization of holomorphic mappings
1999
Abstract
We characterize the holomorphic mappings f between complex Banach spaces that may be written in the form f = g • T , where g is another holomorphic mapping and T is an operator belonging to a closed injective operator ideal. Analogous results are previously obtained for multilinear mappings and polynomials.
References (15)
- R. M. Aron and P. Galindo, Weakly compact multilinear mappings, Proc. Edinburgh Math. Soc. 40 (1997), 181-192. CMP 97:09
- R. M. Aron, C. Hervés and M. Valdivia, Weakly continuous mappings on Banach spaces, J. Funct. Anal. 52 (1983), 189-204. MR 84g:46066
- R. M. Aron and J. B. Prolla, Polynomial approximation of differentiable functions on Banach spaces, J. Reine Angew. Math. 313 (1980), 195-216. MR 81c:41078
- S. Dineen, Complex Analysis in Locally Convex Spaces, Math. Studies 57, North-Holland, Amsterdam 1981. MR 84b:46050
- S. Dineen, Entire functions on c 0 , J. Funct. Anal. 52 (1983), 205-218. MR 85a:46024
- S. Geiss, Ein Faktorisierungssatz für multilineare Funktionale, Math. Nachr. 134 (1987), 149-159. MR 89b:47067
- M. González and J. M. Gutiérrez, Factorization of weakly continuous holomorphic mappings, Studia Math. 118 (1996), 117-133. MR 97b:46061
- M. González, J. M. Gutiérrez and J. G. Llavona, Polynomial continuity on 1 , Proc. Amer. Math. Soc. 125 (1997), 1349-1353. MR 97g:46024
- H. Jarchow, Locally Convex Spaces, B. G. Teubner, Stuttgart 1981. MR 83h:46008
- H. Jarchow, On certain locally convex topologies on Banach spaces, in: K. D. Bierstedt and B. Fuchssteiner (eds.), Functional Analysis: Surveys and Recent Results III, Math. Studies 90, North-Holland, Amsterdam 1984, 79-93. MR 85m:47050
- H. Jarchow, Weakly compact operators on C(K) and C * -algebras, in: H. Hogbe-Nlend (ed.), Functional Analysis and its Applications, World Sci., Singapore 1988, 263-299. MR 89m:46019
- H. Jarchow and U. Matter, On weakly compact operators on C(K)-spaces, in: N. Kalton and E. Saab (eds.), Banach Spaces (Proc., Missouri 1984), Lecture Notes in Math. 1166, Springer, Berlin 1985, 80-88. CMP 18:08
- J. Mujica, Complex Analysis in Banach Spaces, Math. Studies 120, North-Holland, Amster- dam 1986. MR 88d:46084
- A. Pietsch, Operator Ideals, North-Holland Math. Library 20, North-Holland, Amsterdam 1980. MR 81j:47001
- Departamento de Matemáticas, Facultad de Ciencias, Universidad de Cantabria, 39071 Santander, Spain E-mail address: gonzalem@ccaix3.unican.es