Academia.eduAcademia.edu

Outline

Injective factorization of holomorphic mappings

1999

Abstract

We characterize the holomorphic mappings f between complex Banach spaces that may be written in the form f = g • T , where g is another holomorphic mapping and T is an operator belonging to a closed injective operator ideal. Analogous results are previously obtained for multilinear mappings and polynomials.

References (15)

  1. R. M. Aron and P. Galindo, Weakly compact multilinear mappings, Proc. Edinburgh Math. Soc. 40 (1997), 181-192. CMP 97:09
  2. R. M. Aron, C. Hervés and M. Valdivia, Weakly continuous mappings on Banach spaces, J. Funct. Anal. 52 (1983), 189-204. MR 84g:46066
  3. R. M. Aron and J. B. Prolla, Polynomial approximation of differentiable functions on Banach spaces, J. Reine Angew. Math. 313 (1980), 195-216. MR 81c:41078
  4. S. Dineen, Complex Analysis in Locally Convex Spaces, Math. Studies 57, North-Holland, Amsterdam 1981. MR 84b:46050
  5. S. Dineen, Entire functions on c 0 , J. Funct. Anal. 52 (1983), 205-218. MR 85a:46024
  6. S. Geiss, Ein Faktorisierungssatz für multilineare Funktionale, Math. Nachr. 134 (1987), 149-159. MR 89b:47067
  7. M. González and J. M. Gutiérrez, Factorization of weakly continuous holomorphic mappings, Studia Math. 118 (1996), 117-133. MR 97b:46061
  8. M. González, J. M. Gutiérrez and J. G. Llavona, Polynomial continuity on 1 , Proc. Amer. Math. Soc. 125 (1997), 1349-1353. MR 97g:46024
  9. H. Jarchow, Locally Convex Spaces, B. G. Teubner, Stuttgart 1981. MR 83h:46008
  10. H. Jarchow, On certain locally convex topologies on Banach spaces, in: K. D. Bierstedt and B. Fuchssteiner (eds.), Functional Analysis: Surveys and Recent Results III, Math. Studies 90, North-Holland, Amsterdam 1984, 79-93. MR 85m:47050
  11. H. Jarchow, Weakly compact operators on C(K) and C * -algebras, in: H. Hogbe-Nlend (ed.), Functional Analysis and its Applications, World Sci., Singapore 1988, 263-299. MR 89m:46019
  12. H. Jarchow and U. Matter, On weakly compact operators on C(K)-spaces, in: N. Kalton and E. Saab (eds.), Banach Spaces (Proc., Missouri 1984), Lecture Notes in Math. 1166, Springer, Berlin 1985, 80-88. CMP 18:08
  13. J. Mujica, Complex Analysis in Banach Spaces, Math. Studies 120, North-Holland, Amster- dam 1986. MR 88d:46084
  14. A. Pietsch, Operator Ideals, North-Holland Math. Library 20, North-Holland, Amsterdam 1980. MR 81j:47001
  15. Departamento de Matemáticas, Facultad de Ciencias, Universidad de Cantabria, 39071 Santander, Spain E-mail address: gonzalem@ccaix3.unican.es