Academia.eduAcademia.edu

Outline

Work and efficiency optimization of advanced gas turbine cycles

2019, Energy Conversion and Management

https://doi.org/10.1016/J.ENCONMAN.2019.03.087

Abstract

The paper presents a theoretical analysis of advanced gas-turbine cycles. Specifically, three cycles are investigated, that is the intercooled, the reheat, and the intercooled and reheat cycles. The internal irreversibilities, which characterise the compression and expansion processes, are taken into account through the polytropic efficiencies of the compressors and turbines. New analytical formulations for the overall and intermediate pressure-ratios which maximise the net work of the three aforemen-tioned cycles are proposed along with an order relation between these optimum pressure-ratios. Moreover, the thermal efficiency of these cycles is also analysed providing, among other findings, the ranges of the intermediate pressure-ratios returning a benefit in the thermal efficiency in comparison with the simple cycle. Finally, for the sole intercooled and reheat cycle, a novel analytical expression for the maximum point of the thermal efficiency is given. It is also shown that, for the intercooled and reheat cycle, there is a unique value of the overall pressure-ratio which simultaneously maximises the net work and the thermal efficiency. To give some quantitative information, consider a maximum to minimum cycle-temperature ratio equal to 1573/300 and a com-pressor (resp. turbine) polytropic-efficiency equal to 0.8 (resp. 0.88). The net work and the thermal efficiency are maximised by a set of overall pressure-ratios obeying an order relation. The simple, the reheat, the intercooled, and the intercooled and reheat cycles reach the maximum network (resp. thermal efficiency) for increasing values of the overall pressure-ratio, that is 8.550 (resp. 18.260), 14.950 (resp. 25.039), 20.846 (resp. 39.984), and 73.109 (resp. 73.109). The reheat cycle achieves a 34.899% (resp. 6.077%) gain in the net work (resp. thermal efficiency), while the intercooled cycle returns a 31.477% (resp. 15.970%) increment. The maximum network of the intercooled and reheat cycle exactly doubles that of the simple cycle. Finally, the maximum thermal efficiency of the intercooled and reheat cycle yields a 24.966% improvement in comparison with the simple one.

References (75)

  1. A. S. Lebedev and S. V. Kostennikov. "Trends in in- creasing gas-turbine units efficiency". In: Thermal En- gineering 55.6 (2008), pp. 461-468.
  2. M. Insinna, S. Salvadori, and F. Martelli. "Simu- lation of combustor/NGV interaction using coupled RANS solvers: Validation and application to a real- istic test case". In: ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. American Soci- ety of Mechanical Engineers. 2014, V02CT38A010- V02CT38A010.
  3. A. Pilkington, B. Rosic, and S. Horie. "Methods for Controlling Gas Turbine Casing Flows During Engine Shutdown". In: International Journal of Turbomachin- ery, Propulsion and Power 3.2 (2018), p. 17.
  4. M. Eifel, V. Caspary, H. Hönen, and P. Jeschke. "Ex- perimental and numerical analysis of gas turbine blades with different internal cooling geometries". In: Journal of Turbomachinery 133.1 (2011), p. 011018.
  5. M. Insinna, D. Griffini, S. Salvadori, and F. Martelli. "Effects of Realistic Inflow Conditions on the Aero- Thermal Performance of a Film-Cooled Vane". In: 11th European Conference on Turbomachinery Fluid Dy- namics and Thermodynamics (ETC), Madrid, Spain. 2015.
  6. J. E. Dees, D. G. Bogard, G. A. Ledezma, and G. M. Laskowski. "Overall and Adiabatic Effectiveness Val- ues on a Scaled Up, Simulated Gas Turbine Vane: Part I -Experimental Measurements". In: ASME 2011 Turbo Expo: Turbine Technical Conference and Ex- position. American Society of Mechanical Engineers. 2011, pp. 571-582.
  7. P. Adami, S. Salvadori, and K. S. Chana. "Unsteady heat transfer topics in gas turbine stages simulations". In: ASME Turbo Expo 2006: Power for Land, Sea, and Air. American Society of Mechanical Engineers. 2006, pp. 1733-1744.
  8. R. Nacke, B. Northcutt, and I. Mudawar. "Theory and experimental validation of cross-flow micro-channel heat exchanger module with reference to high Mach aircraft gas turbine engines". In: International Journal of Heat and Mass Transfer 54.5-6 (2011), pp. 1224- 1235.
  9. B. Saracoglu, G. Paniagua, S. Salvadori, F. Tomasoni, S. Duni, T. Yasa, and A. Miranda. "Trailing edge shock modulation by pulsating coolant ejection". In: Applied Thermal Engineering 48 (2012), pp. 1-10.
  10. M. Stöhr, I. Boxx, C. D. Carter, and W. Meier. "Ex- perimental study of vortex-flame interaction in a gas turbine model combustor". In: Combustion and flame 159.8 (2012), pp. 2636-2649.
  11. I. Sanchez Torreguitart, T. Verstraete, and L. Mueller. "Optimization of the LS89 axial turbine profile using a cad and adjoint based approach". In: International Journal of Turbomachinery, Propulsion and Power 3.3 (2018), p. 20.
  12. T. Heppenstall. "Advanced gas turbine cycles for power generation: a critical review". In: Applied Thermal En- gineering 18 (1998), pp. 837-846. DOI: 10 . 1016 / S1359-4311(97)00116-6.
  13. A. Poullikkas. "An overview of current and future sus- tainable gas turbine technologies". In: Renewable and Sustainable Energy Reviews 9.5 (2005), pp. 409-443. DOI: 10.1016/j.rser.2004.05.009.
  14. J. H. Horlock. Combined Power Plants: Including Combined Cycle Gas Turbined (CCGT) Plants. Perg- amon Press, Oxford, UK, 1992. ISBN: 0080405029.
  15. R. Kehlhofer, F. Hannemann, B. Rukes, and F. Stirn- imann. Combined-cycle gas & steam turbine power plants, 3rd ed. PennWell Corporation, Tulsa, Okla- homa, USA, 2009. ISBN: 9781593701680.
  16. J. Kotowicz, M. Brzeczek, and M. Job. "The thermo- dynamic and economic characteristics of the modern combined cycle power plant with gas turbine steam cooling". In: Energy 164 (2018), pp. 359-376. ISSN: 0360-5442. DOI: https://doi.org/10.1016/j. energy.2018.08.076.
  17. H. M. Kwon, T. S. Kim, J. L. Sohn, and D. W. Kang. "Performance improvement of gas turbine combined cycle power plant by dual cooling of the inlet air and turbine coolant using an absorption chiller". In: Energy 163 (2018), pp. 1050-1061. ISSN: 0360-5442. DOI: https : / / doi . org / 10 . 1016 / j . energy . 2018 . 08.191.
  18. Z. Liu and I. A. Karimi. "New operating strategy for a combined cycle gas turbine power plant". In: Energy Conversion and Management 171 (2018), pp. 1675- 1684. ISSN: 0196-8904. DOI: https : / / doi . org / 10.1016/j.enconman.2018.06.110.
  19. S. W. Moon, H. M. Kwon, T. S. Kim, D. W. Kang, and J. L. Sohn. "A novel coolant cooling method for en- hancing the performance of the gas turbine combined cycle". In: Energy 160 (2018), pp. 625-634. ISSN: 0360-5442. DOI: https://doi.org/10.1016/j. energy.2018.07.035.
  20. M. K. Sahu and Sanjay. "Comparative exergoeco- nomics of power utilities: Air-cooled gas turbine cy- cle and combined cycle configurations". In: Energy 139 (2017), pp. 42-51. ISSN: 0360-5442. DOI: https:// doi.org/10.1016/j.energy.2017.07.131.
  21. A. A. Taimoor, A. Muhammad, W. Saleem, and M. Zain-ul-abdein. "Humidified exhaust recirculation for efficient combined cycle gas turbines". In: Energy 106 (2016), pp. 356-366. ISSN: 0360-5442. DOI: https : //doi.org/10.1016/j.energy.2016.03.079.
  22. G. Zhang, J. Zheng, A. Xie, Y. Yang, and W. Liu. "Thermodynamic analysis of combined cycle under design/off-design conditions for its efficient design and operation". In: Energy Conversion and Management 126 (2016), pp. 76-88. ISSN: 0196-8904. DOI: https: //doi.org/10.1016/j.enconman.2016.07.066.
  23. D. Li, Y. Hu, D. Li, and J. Wang. "Combined-cycle gas turbine power plant integration with cascaded la- tent heat thermal storage for fast dynamic responses". In: Energy Conversion and Management 183 (2019), pp. 1-13.
  24. J. H. Horlock. Cogeneration-Combined Heat and Power Plants, 2nd ed. Krieger Publishing, Malabar, Florida, USA, 1997. ISBN: 9780894649288.
  25. M. P. Boyce. Handbook for Cogeneration and Com- bined Cycle Power Plants. ASM Press, New York, NY, USA, 2002. ISBN: 0791801691.
  26. A. D. Zareh, R. K. Saray, S. Mirmasoumi, and K. Bahlouli. "Extensive thermodynamic and economic analysis of the cogeneration of heat and power sys- tem fueled by the blend of natural gas and biogas". In: Energy Conversion and Management 164 (2018), pp. 329-343. ISSN: 0196-8904. DOI: https://doi. org/10.1016/j.enconman.2018.03.003.
  27. R. G. dos Santos, P. R. de Faria, J. J. Santos, J. A. da Silva, and D. Flrez-Orrego. "Thermoeconomic model- ing for CO2 allocation in steam and gas turbine cogen- eration systems". In: Energy 117 (2016). The 28th In- ternational Conference on Efficiency, Cost, Optimiza- tion, Simulation and Environmental of Energy Systems -ECOS 2015, pp. 590-603. ISSN: 0360-5442. DOI: https : / / doi . org / 10 . 1016 / j . energy . 2016.04.019.
  28. S. Hou, Y. Zhou, L. Yu, F. Zhang, S. Cao, and Y. Wu. "Optimization of a novel cogeneration system includ- ing a gas turbine, a supercritical CO2 recompression cycle, a steam power cycle and an organic Rankine cycle". In: Energy Conversion and Management 172 (2018), pp. 457-471. ISSN: 0196-8904. DOI: https : //doi.org/10.1016/j.enconman.2018.07.042.
  29. R. Karaali and I. T. ztrk. "Thermoeconomic optimiza- tion of gas turbine cogeneration plants". In: Energy 80 (2015), pp. 474-485. ISSN: 0360-5442. DOI: https : //doi.org/10.1016/j.energy.2014.12.004.
  30. J. H. Lee, T. S. Kim, and E.-h. Kim. "Prediction of power generation capacity of a gas turbine com- bined cycle cogeneration plant". In: Energy 124 (2017), pp. 187-197. ISSN: 0360-5442. DOI: https://doi. org/10.1016/j.energy.2017.02.032.
  31. Z. Wang, W. Han, N. Zhang, M. Liu, and H. Jin. "Pro- posal and assessment of a new CCHP system integrat- ing gas turbine and heat-driven cooling/power cogen- eration". In: Energy Conversion and Management 144 (2017), pp. 1-9. ISSN: 0196-8904. DOI: https : / / doi.org/10.1016/j.enconman.2017.04.043.
  32. M. Carragher, M. De Rosa, A. Kathirgamanathan, and D. P. Finn. "Investment analysis of gas-turbine com- bined heat and power systems for commercial buildings under different climatic and market scenarios". In: En- ergy Conversion and Management 183 (2019), pp. 35- 49.
  33. M. Maheshwari and O. Singh. "Comparative evaluation of different combined cycle configurations having sim- ple gas turbine, steam turbine and ammonia water tur- bine". In: Energy 168 (2019), pp. 1217-1236.
  34. R. Rigo-Mariani, C. Zhang, A. Romagnoli, M. Kraft, K. V. Ling, and J. M. Maciejowski. "A Combined Cy- cle Gas Turbine Model for Heat and Power Dispatch Subject to Grid Constraints". In: IEEE Transactions on Sustainable Energy (2019).
  35. J. H. Horlock. Advanced Gas Turbine Cycles: A Brief Review of Power Generation Thermodynamics. Else- vier Science Ltd, Kidlington, Oxford, UK, 2003. ISBN: 0080442730.
  36. J. B. Burnham, M. H. Giuliani, and D. J. Moeller. "Development, Installation and Operating Results of a Steam Injection System (STIG) in a General Electric LM5000 Gas Generator". In: ASME International Gas Turbine Conference and Exhibit. American Society of Mechanical Engineers. Dusseldorf, Germany, 1986.
  37. M. Laraia, M. Manna, S. Colantuoni, and P. Di Martino. "A multi-objective design optimization strategy as ap- plied to pre-mixed pre-vaporized injection systems for low emission combustors". In: Combustion Theory and Modelling 14.2 (2010), pp. 203-233.
  38. H. K. Kayadelen and Y. Ust. "Thermodynamic, envi- ronmental and economic performance optimization of simple, regenerative, STIG and RSTIG gas turbine cy- cles". In: Energy 121 (2017), pp. 751-771. ISSN: 0360- 5442. DOI: https://doi.org/10.1016/j.energy. 2017.01.060.
  39. A. I. Selwynraj, S. Iniyan, G. Polonsky, L. Suganthi, and A. Kribus. "An economic analysis of solar hybrid steam injected gas turbine (STIG) plant for Indian con- ditions". In: Applied Thermal Engineering 75 (2015), pp. 1055-1064.
  40. A. I. Selwynraj, S. Iniyan, G. Polonsky, L. Suganthi, and A. Kribus. "Exergy analysis and annual exergetic performance evaluation of solar hybrid STIG (steam injected gas turbine) cycle for Indian conditions". In: Energy 80 (2015), pp. 414-427. ISSN: 0360-5442. DOI: https://doi.org/10.1016/j.energy.2014.12. 001.
  41. K. F. Kesser, M. A. Hoffman, and J. W. Baughn. "Analysis of a basic chemically recuperated gas tur- bine power plant". In: Journal of Engineering for Gas Turbines and Power 116.2 (1994), pp. 277-284. DOI: 10.1115/1.2906817.
  42. J. Janes. Chemically Recuperated Gas Turbine. Tech. rep. P500-90-01. The California Energy Commission, 1990.
  43. M. Ni, T. Yang, G. Xiao, D. Ni, X. Zhou, H. Liu, U. Sultan, J. Chen, Z. Luo, and K. Cen. "Thermodynamic analysis of a gas turbine cycle combined with fuel re- forming for solar thermal power generation". In: En- ergy 137 (2017), pp. 20-30. ISSN: 0360-5442. DOI: https : / / doi . org / 10 . 1016 / j . energy . 2017 . 06.172.
  44. S. Shan, Z. Zhou, and K. Cen. "An innovative in- tegrated system concept between oxy-fuel thermo- photovoltaic device and a Brayton-Rankine combined cycle and its preliminary thermodynamic analysis". In: Energy Conversion and Management 180 (2019), pp. 1139-1152.
  45. J. Palsson, A. Selimovic, and L. Sjunnesson. "Com- bined solid oxide fuel cell and gas turbine systems for efficient power and heat generation". In: Journal of power sources 86.1-2 (2000), pp. 442-448.
  46. J. Badur, M. Lemanski, T. Kowalczyk, P. Zilkowski, and S. Kornet. "Zero-dimensional robust model of an SOFC with internal reforming for hybrid energy cy- cles". In: Energy 158 (2018), pp. 128-138. ISSN: 0360- 5442. DOI: https://doi.org/10.1016/j.energy. 2018.05.203.
  47. J. Chen, Y. Chen, H. Zhang, and S. Weng. "Effect of different operating strategies for a SOFC-GT hybrid system equipped with anode and cathode ejectors". In: Energy 163 (2018), pp. 1-14. ISSN: 0360-5442. DOI: https://doi.org/10.1016/j.energy.2018.08. 032.
  48. B. Eisavi, A. Chitsaz, J. Hosseinpour, and F. Ranjbar. "Thermo-environmental and economic comparison of three different arrangements of solid oxide fuel cell- gas turbine (SOFC-GT) hybrid systems". In: Energy Conversion and Management 168 (2018), pp. 343-356. ISSN: 0196-8904. DOI: https://doi.org/10.1016/ j.enconman.2018.04.088.
  49. R. Singh and O. Singh. "Comparative study of com- bined solid oxide fuel cell-gas turbine-Organic Rankine cycle for different working fluid in bottoming cycle". In: Energy Conversion and Management 171 (2018), pp. 659-670. ISSN: 0196-8904. DOI: https://doi. org/10.1016/j.enconman.2018.06.009.
  50. A. Behzadi, A. Habibollahzade, V. Zare, and M. Ashjaee. "Multi-objective optimization of a hybrid biomass-based SOFC/GT/double effect absorption chiller/RO desalination system with CO2 recycle". In: Energy Conversion and Management 181 (2019), pp. 302-318.
  51. M. Ehyaei and M. A. Rosen. "Optimization of a triple cycle based on a solid oxide fuel cell and gas and steam cycles with a multiobjective genetic algorithm and en- ergy, exergy and economic analyses". In: Energy Con- version and Management 180 (2019), pp. 689-708.
  52. T. Choudhary and M. K. Sahu. "Energy and Exergy Analysis of Solid Oxide Fuel Cell Integrated with Gas Turbine CycleA Hybrid Cycle". In: Renewable Energy and its Innovative Technologies. 2019, pp. 139-153.
  53. L. Aichmayer, J. Spelling, and B. Laumert. "Prelimi- nary design and analysis of a novel solar receiver for a micro gas-turbine based solar dish system". In: Solar energy 114 (2015), pp. 378-396.
  54. O. Behar. "A novel hybrid solar preheating gas tur- bine". In: Energy Conversion and Management 158 (2018), pp. 120-132.
  55. E. Bellos, C. Tzivanidis, and K. A. Antonopoulos. "Parametric analysis and optimization of a solar as- sisted gas turbine". In: Energy conversion and manage- ment 139 (2017), pp. 151-165.
  56. D. Olivenza-León, A. Medina, and A. C. Hernández. "Thermodynamic modeling of a hybrid solar gas- turbine power plant". In: Energy Conversion and Man- agement 93 (2015), pp. 435-447.
  57. G. Gonca. "Exergetic and ecological performance anal- yses of a gas turbine system with two intercoolers and two re-heaters". In: Energy 124 (2017), pp. 579-588. ISSN: 0360-5442. DOI: https://doi.org/10.1016/ j.energy.2017.02.096.
  58. M. Meas and T. Bello-Ochende. "Thermodynamic de- sign optimisation of an open air recuperative twin-shaft solar thermal Brayton cycle with combined or exclu- sive reheating and intercooling". In: Energy Conver- sion and Management 148 (2017), pp. 770-784. ISSN: 0196-8904. DOI: https://doi.org/10.1016/j. enconman.2017.06.043.
  59. S. Ramakrishnan and C. F. Edwards. "Maximum- efficiency architectures for heat-and work-regenerative gas turbine engines". In: Energy 100 (2016), pp. 115- 128. ISSN: 0360-5442. DOI: https://doi.org/10. 1016/j.energy.2016.01.044.
  60. F. Joos, P. Brunner, M. Stalder, and S. Tschirren. "Field experience of the sequential combustion system for the GT24/GT26 gas turbine family". In: ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical En- gineers. Stockholm, Sweden, 1998, V004T10A009- V004T10A009.
  61. A. J. Crisalli and M. L. Parker. "Overview of the WR- 21 intercooled recuperated gas turbine engine system: a modern engine for a modern fleet". In: ASME 1993 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical En- gineers. Cincinnati, Ohio, USA, 1993.
  62. H. Cohen, G. F. C. Rogers, and H. I. H. Saravanamut- too. Gas turbine theory. Longman Group Limited, Har- low, UK, 1996. ISBN: 0582236320.
  63. R. W. Haywood. Analysis of engineering cycles: power, refrigerating and gas liquefaction plant, 4th ed. Perga- mon Press, Oxford, UK, 1991. ISBN: 0080407390.
  64. A. Bejan. Advanced engineering thermodynamics, 4th ed. John Wiley & Sons, Hoboken, New Jersey, USA, 2016. ISBN: 9781119052098.
  65. W. A. Woods, P. J. Bevan, and D. I. Bevan. "Output and efficiency of the closed-cycle gas turbine". In: Proceed- ings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 205.1 (1991), pp. 59-66. DOI: 10.1243/PIME_PROC_1991_205_010_02.
  66. T. H. Frost, B. Agnew, and A. Anderson. "Optimiza- tions for Brayton-Joule gas turbine cycles". In: Pro- ceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 206.4 (1992), pp. 283-288. DOI: 10.1243/PIME_PROC_1992_206_ 045_02.
  67. A. Calvo Hernández, A. Medina, and J. M. M. Roco. "Power and efficiency in a regenerative gas turbine". In: Journal of Physics D: Applied Physics 28 (1995), pp. 2020-2023.
  68. J. M. Gordon and M. Huleihil. "General performance characteristics of real heat engines". In: Journal of Ap- plied Physics 72 (1992), pp. 829-837. DOI: 10.1063/ 1.351755.
  69. A. Calvo Hernández, J. M. M. Roco, and A. Medina. "Power and efficiency in a regenerative gas-turbine cy- cle with multiple reheating and intercooling stages". In: Journal of Physics D: Applied Physics 29 (1996), pp. 1462-1468.
  70. J. H. Horlock and W. A. Woods. "Determination of the optimum performance of gas turbines". In: Proceedings of the Institution of Mechanical Engi- neers, Part C: Journal of Mechanical Engineering Sci- ence 214.1 (2000), pp. 243-255. DOI: 10 . 1243 / 0954406001522930.
  71. R. Bontempo and M. Manna. "Efficiency optimization of advanced gas turbine recuperative-cycles". In: sub- mitted (2019).
  72. R. Della Volpe. Macchine. Liguori Editore, Napoli, Italy, 2011. ISBN: 9788820749729.
  73. G. Lozza. Turbine a gas e cicli combinati. Società Ed- itrice Esculapio, 2016.
  74. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical recipes in Fortran 77: The art of scientific computing, 2nd edition, Vol. 1. Cam- bridge university press, 1992.
  75. S. L. Dixon. Fluid Mechanics, Thermodynamics of Tur- bomachinery, 4th Ed. Butterworth-Heinemann, 1998.