Academia.eduAcademia.edu

Outline

Discrete rectilinear 2-center problems

2000, Computational Geometry

https://doi.org/10.1016/S0925-7721(99)00052-8

Abstract

Given a set P of n points in the plane, we seek two squares such that their center points belong to P , their union contains P , and the area of the larger square is minimal. We present efficient algorithms for three variants of this problem: in the first the squares are axis parallel, in the second they are free to rotate but must remain parallel to each other, and in the third they are free to rotate independently.

References (23)

  1. P. Agarwal, M. Sharir, Planar geometric location problems, Algorithmica 11 (1994) 185-195.
  2. P. Agarwal, M. Sharir, Efficient algorithms for geometric optimization, ACM Comput. Surveys 30 (4) (1998) 412-458.
  3. P. Agarwal, M. Sharir, E. Welzl, The discrete 2-center problem, in: Proc. 13th ACM Symp. on Computational Geometry, 1997, pp. 147-155.
  4. R. Cole, Parallel merge sort, SIAM J. Comput. 17 (4) (1988) 770-785.
  5. M. de Berg, M. van Kreveld, M. Overmars, O. Schwartzkopf, Computational Geometry, Algorithms and Applications, Springer, Berlin, 1997.
  6. L. Danzer, B. Grünbaum, Intersection properties of boxes in R d , Combinatorica 2 (3) (1982) 237-246.
  7. O. Devillers, M.J. Katz, Optimal line bipartitions of point sets, Internat. J. Comput. Geom. Appl. 9 (1999) 39-51.
  8. D. Eppstein, Faster construction of planar two-centers, in: Proc. 8th ACM-SIAM Symp. on Discrete Algorithms, 1997, pp. 131-138.
  9. G.N. Frederickson, D.B. Johnson, Generalized selection and ranking: sorted matrices, SIAM J. Comput. 13 (1984) 14-30.
  10. A. Glozman, K. Kedem, G. Shpitalnik, On some geometric selection and optimization problems via sorted matrices, Computational Geometry 11 (1998) 17-28.
  11. J. Hershberger, S. Suri, Finding tailored partitions, J. Algorithms 12 (1991) 431-463.
  12. J.W. Jaromczyk, M. Kowaluk, Orientation independent covering of point sets in R 2 with pairs of rectangles or optimal squares, in: Proc. European Workshop on Computational Geometry, Lecture Notes in Computer Science, Vol. 871, 1996, pp. 71-78.
  13. J.W. Jaromczyk, M. Kowaluk, The two-line center problem from a polar view: A new algorithm and data structure, in: Proc. 4th Workshop Algorithms Data Struct., Lecture Notes in Computer Science, Vol. 955, 1995, pp. 13-25.
  14. M.J. Katz, F. Nielsen, On piercing sets of objects, in: Proc. 12th ACM Symp. on Computational Geometry, 1996, pp. 113-121.
  15. M.J. Katz, M. Sharir, An expander-based approach to geometric optimization, SIAM J. Comput. 26 (1997) 1384-1408.
  16. N. Megiddo, Applying parallel computation algorithms in the design of serial algorithms, J. ACM 30 (1983) 852-865.
  17. K. Mehlhorn, Multi-dimensional Searching and Computational Geometry, Data Structures and Algorithms, Vol. 3, Springer, Berlin, 1984.
  18. M.H. Overmars, J. van Leeuwen, Maintenance of configurations in the plane, J. Comput. Syst. Sci. 23 (1981) 166-204.
  19. M. Segal, On the piercing of axis-parallel rectangles, Internat. J. Comput. Geom. Appl., to appear.
  20. M. Segal, Covering point sets and accompanying problems, Ph.D. Thesis.
  21. M. Sharir, A near-linear algorithm for the planar 2-center problem, Discrete Comput. Geom. 18 (1997) 125- 134.
  22. M. Sharir, P. Agarwal, Davenport-Shintzel Sequences and Their Applications, Cambridge University Press, New York, 1995.
  23. M. Sharir, E. Welzl, Rectilinear and polygonal p-piercing and p-center problems, in: Proc. 12th ACM Symp. on Computational Geometry, 1996, pp. 122-132.