Academia.eduAcademia.edu

Outline

Rectilinear static and dynamic discrete 2-center problems

1999, Algorithms and Data Structures

https://doi.org/10.1007/3-540-48447-7_28

Abstract

In this paper we consider several variants of the discrete 2center problem. The problem is: Given a set S of n demand points and a set C of m supply points, nd two \minimal" axis-parallel squares (or rectangles) centered at the points of C that cover all the points of S. We present e cient solutions for both the static and dynamic versions of the problem (i.e. points of S are allowed to be inserted or deleted) and also consider the problem in xed d; d 3 dimensional space. For the static version in the plane we give an optimal algorithm.

References (22)

  1. Agarwal P., Sharir M., Welzl E.: The discrete 2-center problem, Proc. 13th ACM Symp. on Computational Geometry (1997) 147{155
  2. Agarwal P., Erickson J.: Geometric range searching and its relatives. TR CS-1997- 11, Duke University (1997)
  3. Bajaj C.: Geometric optimization and computational complexity. PhD thesis, TR 84-629, Cornell University (1984)
  4. Bespamyatnikh S., Segal M.: Covering the set of points by boxes. Proc. 9th Canadian Conference on Computational Geometry (1997) 33{38
  5. Cormen T,, Leiserson C., Rivest R.: Introduction to algorithms. The MIT Press (1990)
  6. Chazelle B.: A functional approach to data structures and its use in multidimen- sional searching. SIAM J. Computing 17 (1988) 427{462
  7. de Berg M., van Kreveld M., Overmars M., O. Schwartzkopf O.: Computational Geometry, Algorithms and Applications. Springer Verlag (1997)
  8. Drezner Z.: The p-center problem: heuristic and optimal algorithms. Journal Oper- ational Research Society 35 (1984) 741{748
  9. Drezner Z.: On the rectangular p-center problem. Naval Research Logist. Quart. bf 34 (1987) 229{234
  10. Eppstein D.: Faster construction of planar two-centers. Proc. 8th ACM-SIAM Sym- pos. Discrete Algorithms (1997) 131{138
  11. Frederickson G. N., Johnson D. B.: Generalized selection and ranking: sorted ma- trices. SIAM J. Computing 13 (1994) 14{30
  12. Glozman A., Kedem K., Shpitalnik G.: E cient solution of the two-line center problem and other geometric problems via sorted matrices. Proc. 4th Workshop Al- gorithms Data Struct., Lecture Notes in Computer Science 955 (1995) 26{37
  13. Hershberger J., Suri S.: Finding Tailored Partitions. J. Algorithms 12 (1991) 431{ 463
  14. Jaromczyk J. W., Kowaluk M.: Orientation independent covering of point sets in R 2 with pairs of rectangles or optimal squares. Proc. European Workshop on Computational Geometry. Lecture Notes in Computer Science 871 (1996) 71{78
  15. Jaromczyk J. W., Kowaluk M.: An e cient algorithm for the euclidean two center problem. Proc. 10th ACM Symposium on Computational Geometry (1994) 303{311
  16. Jaromczyk J. W., Kowaluk M.: The two-line center problem from a polar view: A new algorithm and data structure. Proc. 4th Workshop Algorithms Data Struct., Lecture Notes in Computer Science 955 (1995) 13{25
  17. Katz M. J., Kedem K., Segal M.: Constrained square-center problems. In 6th Scan- dinavian Workshop on Algorithm Theory (1998) 95{106
  18. Katz M. J., Sharir M.: An expander-based approach to geometric optimization. SIAM J. Computing 26 (1997) 1384{1408
  19. Nussbaum D.: Rectilinear p-Piercing Problems. Proc. of the Intern. Symposium on Symbolic and Algebraic Computation (1997) 316-323
  20. Segal M.: On the piercing of axis-parallel rectangles and rings. Int. Journal of Comp. Geom. and Appls., to appear
  21. Sharir M.: A near-linear algorithm for the planar 2-center problem. Proc. 12th ACM Symp. on Computational Geometry (1996) 106{112
  22. Sharir M., Welzl E.: Rectilinear and polygonal p-piercing and p-center problems. Proc. 12th ACM Symp. on Comput. Geometry (1996) 122{132