k-Enclosing Axis-Parallel Square
2011, Lecture Notes in Computer Science
https://doi.org/10.1007/978-3-642-21931-3_7Abstract
Let P be a set of n points in the plane. Here an optimization technique is used to solve some optimization problems. A simple deterministic algorithm is proposed to compute smallest square containing at least k points of P. The time and space complexities of the algorithm are O(n log 2 n) and O(n) respectively. For large values of k, the worst case time complexity of the algorithm is O(n + (n − k) log 2 (n − k)) using O(n) space which is the best known bound for worst case time complexity. Then an algorithm is designed to locate smallest rectangle containing at least k points of P for large values of k and all values of k.
References (36)
- B. Korte and J. Vygen, Combinatorial Optimization Theory and Algo- rithms, 2nd ed. Berlin, Heidelberg, New York: Springer-Verlog.
- S. Das, P. P. Goswami, and S. C. Nandy, "Smallest k-point enclosing rectangle and square of arbitrary orientation," Inf. Process. Lett., vol. 94, no. 6, pp. 259-266, 2005.
- A. Aggarwal, H. Imai, N. Katoh, and S. Suri, "Finding k points with minimum diameter and related problems," Journal of Algorithms, vol. 12, pp. 38-56, 1991.
- A. Datta, H.-P. Lenhof, C. Schwarz, and M. H. M. Smid, "Static and dynamic algorithms for k-point clustering problems," in WADS, 1993, pp. 265-276.
- D. Eppstein and J. Erickson, "Iterated nearest neighbors and finding minimal polytopes," Discrete & Computational Geometry, vol. 11, pp. 321-350, 1994.
- M. Smid, "Finding k points with a smallest enclosing square," in Report MPI-92-152, 1995.
- A. Datta, H.-P. Lenhof, C. Schwarz, and M. H. M. Smid, "Static and dynamic algorithms for k-point clustering problems," J. Algorithms, vol. 19, no. 3, pp. 474-503, 1995.
- T. M. Chan, "Geometric applications of a randomized optimization technique," iscrete Comput. Geom., vol. 22, no. 4, pp. 547-567, 1999.
- J. Matoušek, "On geometric optimization with few violated constraints," Discrete Comput. Geom., vol. 14, pp. 365-384, 1995.
- T. Weise, Global Optimization Algorithms: Theory and Application, 2nd ed., 2009.
- T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Intoduction To algorithms, 5th ed. PHI, 2001.
- J. Kleinberg and E. Tardos, Algorithm Design, 1st ed. Pearson Education, 2006.
- D. E. Goldberg, Genetic Algorithms in Search, Optimization and Ma- chine Learning. New York: Addison-Wesley, 1989.
- K. A. D. Jong, Evolutionary Computation: A Unified Approach. MIT Press.
- K. Mulmuley, Computational Geometry: An Introduction Through Ran- domized Algorithms. Englewood Cliffs, NJ 07632: Prentice-Hall, 1994.
- L. Davis, Ed., Handbook of Genetic Algorithms. New York: Van Nostrand Reinhold, 1991.
- Bishop and Christopher, Pattern Recognition and Machine Learnin. Berlin, New York: Springer, 2006.
- J. T. Tou and R. C. Gonzalez, Pattern Recognition Principles. Reading: Addison-Wesley, 1974.
- R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis. New York: Wiley, 1973.
- Z. Drezner and H. W. Hamacher, Facility location: applications and theory, 1st ed. Berlin, Heidelberg, New York: Springer, 2001.
- R. Z. Farahani and M. Hekmatfar, Facility Location: Concepts, Models, Algorithms and Case Studies. Berlin, Heidelberg: Springer-Verlog, 2009.
- R. L. Francis and L. Mirchandani, Discrete Location Theory. New York: Wiley, 1990.
- R. L. Francis, F. Leon, J. McGinnis, and J. A. White, Facility Layout and Location: An Analytical Approach. New York: Prentice-Hall, 1992.
- H. C. Andrews, Introduction to mathematical techniques in pattern recognition. R.E. Krieger Pub. Co, 1983.
- T. Asano, B. K. Bhattacharya, J. M. Keil, and F. Yao, "Clustering algorithms based on minimum and maximum spanning trees," in Proc. 4th Annu. ACM Sympos. Comput. Geom., 1988, pp. 252-257.
- J. A. Hartigan, Clustering Algorithms. New York: John Wiley & Sons, 1975.
- L. Kaufman and P. Roussenw, Finding Groups in Data: An Introduction to Cluster Analysis. NY, US: John Wiley & Sons, 1990.
- B. S. Everitt, Cluster Analysis. Halsted Press, third edition, 1993.
- A. K. Jain and R. C. Dubes, Algorithms for Clustering Data. Englewood Cliffs, NJ: Prentice-Hall, 1988.
- R. C. Dubes and A. K. Jain, "Clustering techniques : The user's dilemma," Pattern Recognition, vol. 8, pp. 247-260, 1976.
- S. Majumder and B. B. Bhattacharya, "Density or discrepancy: A vlsi designers dilemma in hot spot analysis," Information Processing Lette, vol. 107, pp. 353-37, 2008.
- S. Dasgupta, C. H. Papadimitriou, and U. V. Vazirani, Algorithms. McGraw-Hill, 2006.
- M. d. Berg, O. Cheong, M. Kreveld, and M. Overmars, Computational Geometry: Algorithms and Applications, 3rd ed. Springer, April 2008.
- H. Edelsbrunner, Algorithms in Computation Geometry. Berlin, Hei- delberg, New york, London, Paris, Tokyo: Springer-Verlog, 1987.
- K. Mehlhorn, Data structures and algorithms 3: multi-dimensional searching and computational geometry. New York, NY, USA: Springer- Verlag New York, Inc., 1984.
- M. Blum, R. W. Floyd, V. Pratt, R. Rivest, and R. Tarjan, "Time bounds for selection," Journal of Computing System Sciences, vol. 7, pp. 448- 461, 1973.