Academia.eduAcademia.edu

Outline

k-Enclosing Axis-Parallel Square

2011, Lecture Notes in Computer Science

https://doi.org/10.1007/978-3-642-21931-3_7

Abstract

Let P be a set of n points in the plane. Here an optimization technique is used to solve some optimization problems. A simple deterministic algorithm is proposed to compute smallest square containing at least k points of P. The time and space complexities of the algorithm are O(n log 2 n) and O(n) respectively. For large values of k, the worst case time complexity of the algorithm is O(n + (n − k) log 2 (n − k)) using O(n) space which is the best known bound for worst case time complexity. Then an algorithm is designed to locate smallest rectangle containing at least k points of P for large values of k and all values of k.

References (36)

  1. B. Korte and J. Vygen, Combinatorial Optimization Theory and Algo- rithms, 2nd ed. Berlin, Heidelberg, New York: Springer-Verlog.
  2. S. Das, P. P. Goswami, and S. C. Nandy, "Smallest k-point enclosing rectangle and square of arbitrary orientation," Inf. Process. Lett., vol. 94, no. 6, pp. 259-266, 2005.
  3. A. Aggarwal, H. Imai, N. Katoh, and S. Suri, "Finding k points with minimum diameter and related problems," Journal of Algorithms, vol. 12, pp. 38-56, 1991.
  4. A. Datta, H.-P. Lenhof, C. Schwarz, and M. H. M. Smid, "Static and dynamic algorithms for k-point clustering problems," in WADS, 1993, pp. 265-276.
  5. D. Eppstein and J. Erickson, "Iterated nearest neighbors and finding minimal polytopes," Discrete & Computational Geometry, vol. 11, pp. 321-350, 1994.
  6. M. Smid, "Finding k points with a smallest enclosing square," in Report MPI-92-152, 1995.
  7. A. Datta, H.-P. Lenhof, C. Schwarz, and M. H. M. Smid, "Static and dynamic algorithms for k-point clustering problems," J. Algorithms, vol. 19, no. 3, pp. 474-503, 1995.
  8. T. M. Chan, "Geometric applications of a randomized optimization technique," iscrete Comput. Geom., vol. 22, no. 4, pp. 547-567, 1999.
  9. J. Matoušek, "On geometric optimization with few violated constraints," Discrete Comput. Geom., vol. 14, pp. 365-384, 1995.
  10. T. Weise, Global Optimization Algorithms: Theory and Application, 2nd ed., 2009.
  11. T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Intoduction To algorithms, 5th ed. PHI, 2001.
  12. J. Kleinberg and E. Tardos, Algorithm Design, 1st ed. Pearson Education, 2006.
  13. D. E. Goldberg, Genetic Algorithms in Search, Optimization and Ma- chine Learning. New York: Addison-Wesley, 1989.
  14. K. A. D. Jong, Evolutionary Computation: A Unified Approach. MIT Press.
  15. K. Mulmuley, Computational Geometry: An Introduction Through Ran- domized Algorithms. Englewood Cliffs, NJ 07632: Prentice-Hall, 1994.
  16. L. Davis, Ed., Handbook of Genetic Algorithms. New York: Van Nostrand Reinhold, 1991.
  17. Bishop and Christopher, Pattern Recognition and Machine Learnin. Berlin, New York: Springer, 2006.
  18. J. T. Tou and R. C. Gonzalez, Pattern Recognition Principles. Reading: Addison-Wesley, 1974.
  19. R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis. New York: Wiley, 1973.
  20. Z. Drezner and H. W. Hamacher, Facility location: applications and theory, 1st ed. Berlin, Heidelberg, New York: Springer, 2001.
  21. R. Z. Farahani and M. Hekmatfar, Facility Location: Concepts, Models, Algorithms and Case Studies. Berlin, Heidelberg: Springer-Verlog, 2009.
  22. R. L. Francis and L. Mirchandani, Discrete Location Theory. New York: Wiley, 1990.
  23. R. L. Francis, F. Leon, J. McGinnis, and J. A. White, Facility Layout and Location: An Analytical Approach. New York: Prentice-Hall, 1992.
  24. H. C. Andrews, Introduction to mathematical techniques in pattern recognition. R.E. Krieger Pub. Co, 1983.
  25. T. Asano, B. K. Bhattacharya, J. M. Keil, and F. Yao, "Clustering algorithms based on minimum and maximum spanning trees," in Proc. 4th Annu. ACM Sympos. Comput. Geom., 1988, pp. 252-257.
  26. J. A. Hartigan, Clustering Algorithms. New York: John Wiley & Sons, 1975.
  27. L. Kaufman and P. Roussenw, Finding Groups in Data: An Introduction to Cluster Analysis. NY, US: John Wiley & Sons, 1990.
  28. B. S. Everitt, Cluster Analysis. Halsted Press, third edition, 1993.
  29. A. K. Jain and R. C. Dubes, Algorithms for Clustering Data. Englewood Cliffs, NJ: Prentice-Hall, 1988.
  30. R. C. Dubes and A. K. Jain, "Clustering techniques : The user's dilemma," Pattern Recognition, vol. 8, pp. 247-260, 1976.
  31. S. Majumder and B. B. Bhattacharya, "Density or discrepancy: A vlsi designers dilemma in hot spot analysis," Information Processing Lette, vol. 107, pp. 353-37, 2008.
  32. S. Dasgupta, C. H. Papadimitriou, and U. V. Vazirani, Algorithms. McGraw-Hill, 2006.
  33. M. d. Berg, O. Cheong, M. Kreveld, and M. Overmars, Computational Geometry: Algorithms and Applications, 3rd ed. Springer, April 2008.
  34. H. Edelsbrunner, Algorithms in Computation Geometry. Berlin, Hei- delberg, New york, London, Paris, Tokyo: Springer-Verlog, 1987.
  35. K. Mehlhorn, Data structures and algorithms 3: multi-dimensional searching and computational geometry. New York, NY, USA: Springer- Verlag New York, Inc., 1984.
  36. M. Blum, R. W. Floyd, V. Pratt, R. Rivest, and R. Tarjan, "Time bounds for selection," Journal of Computing System Sciences, vol. 7, pp. 448- 461, 1973.