Academia.eduAcademia.edu

Outline

Can randomness alone tune the fractal dimension?

2002, Physica A: Statistical Mechanics and its Applications

https://doi.org/10.1016/S0378-4371(02)01242-6

Abstract

We present a generalized stochastic Cantor set by means of a simple cut and delete process and discuss the self-similar properties of the arising geometric structure. To increase the flexibility of the model, two free parameters, m and b, are introduced which tune the relative strength of the two processes and the degree of randomness respectively. In doing so, we have identified a new set with a wide spectrum of subsets produced by tuning either m or b. Measuring the size of the resulting set in terms of fractal dimension, we show that the fractal dimension increases with increasing order and reaches its maximum value when the randomness is completely ceased.

References (27)

  1. B. B. Mandelbrot, The Fractal Geometry of Nature (Free- man, San Francisco, 1982).
  2. M. K. Hassan and G. J. Rodgers, Phys. Lett. A 218, 207 (1996).
  3. S. Hansen and J. M. Ottino, Phys. Rev. E 53, 4209 (1996).
  4. S. Redner, in Statistical Models for the Fracture of Dis- ordered Media, ed. H. J. Herrmann and S. Roux (Elsevier Science, New York, 1990).
  5. R. M. Ziff and E. D. McGrady, Macromolecules 19, 2513 (1986).
  6. R. Shinnar, J. Fluid Mech. 10, 259 (1961).
  7. P. L. Krapivsky and E. Ben Naim, Phys. Rev. E 50, 3502 (1994);
  8. M. K. Hassan, ibid. 54, 1126 (1996);
  9. M. K. Hassan and G. J. Rodgers, Phys. Lett. A 218, 207 (1996).
  10. M. K. Hassan and J. Kurths, Phys. Rev. E 64, 016119 (2001).
  11. B. F. Edwards, M Cai and H. Han, Phys. Rev. A 41, 5755 (1990), J. Huang, X. Guo, B. F. Edwards and A. D. Levine J. Phys. A: Math Gen. 29, 7377 (1996).
  12. R. C. Treat, J. Phys. A: Math. Gen. 30, 7639 (1997).
  13. J. A. N. Filipe and G. J. Rodgers, Phys. Rev. E 54, 1290 (1996).
  14. H. J. Bhabha and S. K. Chakrabarty, Proc. Roy. Soc. (London) A 181, 267 (1943).
  15. A. N. Kolmogorov, Bull. Acad. Sci. USSR, Phys. Ser. 1, 335 (1937);
  16. M. Avrami, J. Chem. Phys. 7, 1103, (1939);
  17. W. A. Johnson and P. A. Mehl, Trans. AIMME 135, 416 (1939).
  18. E. Ben-Naim and P. L. Krapivsky, Phys. Rev. E 54, 3562 (1996);
  19. K. Sekimoto, Physica 135A, 261 (1984);
  20. Eloi Pineda and Daniel Crespo, Phys. Rev. B 60, 3104 (1999);
  21. M. Tomellini, M. Fanfoni and M volpe, Phys. Rev. B 62, 11300 (2000).
  22. R. M. Ziff and E. D. McGrady, J. Phys. A: Math. Gen. 18, 3025 (1985).
  23. A. Charlesby, Proc. R. Soc. London. Ser. A 224, 120 (1954).
  24. Y. L. Luke, The Special Functions and Their Approxi- mations (Academic, New York, 1969).
  25. H. E Stanley, Rev. Mod. Phys. 71, S358 (1999).
  26. J. Feder, Fractals (Plenum, New York, 1988).
  27. N. V. Brilliantov, Y. A. Andrienko, P. L. Krapivsky and J. Kurths, Phys. Rev. Lett. 76, 4058 (1996). View publication stats View publication stats