Selfsimilar Fractals and Selfsimilar Random Fractals
2000, Birkhäuser Basel eBooks
https://doi.org/10.1007/978-3-0348-8380-1_5Abstract
We survey the application of contraction mapping argments to selfsimilar (nonrandom) fractal sets, measures and functions. We review the results for selfsimilar random fractal sets and measures and show how the method and extensions also work for selfsimilar random fractal functions.
References (13)
- Matthias Arbeiter, Random recursive construction of self-similar fractal measures. The noncompact case, Probab. Theory Related Fields 88 (1991), 497-520.
- M. F. Barnsley, S. G. Demko, J. H. Elton, and J. S. Geronimo, Invariant measures for Markov processes arising from iterated function systems with place-dependent proba- bilities, Ann. Inst. H. Poincaré Probab. Statist. 24 (1988), 367-394.
- M. F. Barnsley, S. G. Demko, J. H. Elton, and J. S. Geronimo, Erratum: "Invari- ant measures for Markov processes arising from iterated function systems with place- dependent probabilities", Ann. Inst. H. Poincaré Probab. Statist. 25 (1989), 589-590.
- K. J. Falconer, Random fractals, Math. Proc. Cambridge Philos. Soc. 100 (1986), 559-582.
- Kenneth Falconer, Fractal geometry, mathematical foundations and applications, John Wiley & Sons, Ltd., Chichester, 1990.
- Kenneth Falconer, Techniques in fractal geometry, John Wiley & Sons, Ltd., Chich- ester, 1997.
- Siegfried Graf, Statistically self-similar fractals, Probab. Theory Related Fields 74 (1987), 357-392.
- Siegfried Graf, Random fractals, Rend. Istit. Mat. Univ. Trieste 23 (1991), no. 1, 81-144 (1993), School on Measure Theory and Real Analysis (Grado, 1991).
- John E. Hutchinson and Ludger Rüschendorf, Random fractal measures via the con- traction method, Indiana Univ. Math. J. 47 (1998), 471-487.
- John E. Hutchinson and Ludger Rüschendorf, Random fractals and probability metrics, Research Report MRR48, Australian National University, 1998, www- maths.anu.edu.au/research.reports .
- John E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), 713-747.
- John E. Hutchinson, Deterministic and random fractals, Complex Systems (Terry Bossomaier and David Green, eds.), Cambridge Univ. Press, 1999, to appear.
- Lars Olsen, Random geometrically graph directed self-similar multifractals, Longman Scientific & Technical, Harlow, 1994.