Academia.eduAcademia.edu

Outline

Patterns in random fractals

2020, American Journal of Mathematics

https://doi.org/10.1353/AJM.2020.0024

Abstract

We characterize the existence of certain geometric configurations in the fractal percolation limit set A in terms of the almost sure dimension of A. Some examples of the configurations we study are: homothetic copies of finite sets, angles, distances, and volumes of simplices. In the spirit of relative Szemerédi theorems for random discrete sets, we also consider the corresponding problem for sets of positive ν-measure, where ν is the natural measure on A. In both cases we identify the dimension threshold for each class of configurations. These results are obtained by investigating the intersections of the products of m independent realizations of A with transversal planes and, more generally, algebraic varieties, and extend some well known features of independent percolation on trees to a setting with long-range dependencies.

References (40)

  1. Marc Carnovale. A relative Roth theorem in dense subsets of sparse pseudorandom fractals. Preprint, available at https://people.math.osu.edu/carnovale.2/Research/RFR.pdf, 2015. 3
  2. Vincent Chan, Izabella Laba, and Malabika Pramanik. Finite configurations in sparse sets. J. Anal. Math., 128:289-335, 2016. 3, 54
  3. Changhao Chen, Henna Koivusalo, Bing Li, and Ville Suomala. Projections of random cov- ering sets. J. Fractal Geom., 1(4):449-467, 2014. 16
  4. D. Conlon and W. T. Gowers. Combinatorial theorems in sparse random sets. Ann. of Math. (2), 184(2):367-454, 2016. 4, 7
  5. David Conlon, Jacob Fox, and Yufei Zhao. A relative Szemerédi theorem. Geom. Funct. Anal., 25(3):733-762, 2015. 4
  6. Roy O. Davies, J. M. Marstrand, and S. J. Taylor. On the intersections of transforms of linear sets. Colloq. Math., 7:237-243, 1959/1960. 2
  7. M. Burak Erdogan. A bilinear Fourier extension theorem and applications to the distance set problem. Int. Math. Res. Not., (23):1411-1425, 2005. 3
  8. K. J. Falconer. On the Hausdorff dimensions of distance sets. Mathematika, 32(2):206-212 (1986), 1985. 3
  9. K. J. Falconer. On a problem of Erdős on fractal combinatorial geometry. J. Combin. Theory Ser. A, 59(1):142-148, 1992. 3, 54
  10. Kenneth Falconer. Fractal geometry. John Wiley & Sons Inc., Hoboken, NJ, second edition, 2003. Mathematical foundations and applications. 10
  11. Kenneth Falconer and Xiong Jin. Hölder continuity of the liouville quantum gravity measure. Preprint, available at http://arxiv.org/1601.00556, 2016. 16
  12. Loukas Grafakos, Allan Greenleaf, Alex Iosevich, and Eyvindur Palsson. Multilinear gener- alized Radon transforms and point configurations. Forum Math., 27(4):2323-2360, 2015. 3, 52
  13. Ben Green and Terence Tao. The primes contain arbitrarily long arithmetic progressions. Ann. of Math. (2), 167(2):481-547, 2008. 2
  14. Allan Greenleaf, Alex Iosevich, Bochen Liu, and Eyvindur Palsson. A group-theoretic view- point on Erdős-Falconer problems and the Mattila integral. Rev. Mat. Iberoam., 31(3):799- 810, 2015. 3
  15. Allan Greenleaf, Alex Iosevich, and Mihalis Mourgoglou. On volumes determined by subsets of Euclidean space. Forum Math., 27(1):635-646, 2015. 52
  16. Viktor Harangi, Tamás Keleti, Gergely Kiss, Péter Maga, András Máthé, Pertti Mattila, and Balázs Strenner. How large dimension guarantees a given angle? Monatsh. Math., 171(2):169- 187, 2013. 53
  17. Kevin Henriot, Izabella Laba, and Malabika Pramanik. On polynomial configurations in frac- tal sets. Anal. PDE, 9(5):1153-1184, 2016. 3
  18. Alex Iosevich and Bochen Liu. Equilateral triangles in subsets of R d of large Hausdorff di- mension.
  19. Israel J. Math. to appear. Preprint available at http:/arxiv.org/1603.01907. 3, 54
  20. Svante Janson. Large deviations for sums of partly dependent random variables. Random Structures Algorithms, 24(3):234-248, 2004. 19
  21. Jean-Pierre Kahane. Positive martingales and random measures. Chinese Ann. Math. Ser. B, 8(1):1-12, 1987. A Chinese summary appears in Chinese Ann. Math. Ser. A 8 (1987), no. 1, 136. 17
  22. Tamás Keleti. A 1-dimensional subset of the reals that intersects each of its translates in at most a single point. Real Anal. Exchange, 24(2):843-844, 1998/99. 3
  23. Steven G. Krantz and Harold R. Parks. Geometric integration theory. Cornerstones. Birkhäuser Boston, Inc., Boston, MA, 2008. 43, 46
  24. Izabella Laba and Malabika Pramanik. Arithmetic progressions in sets of fractional dimension. Geom. Funct. Anal., 19(2):429-456, 2009. 3, 4
  25. Quansheng Liu. Local dimensions of the branching measure on a Galton-Watson tree. Ann. Inst. H. Poincaré Probab. Statist., 37(2):195-222, 2001. 13
  26. Russell Lyons and Yuval Peres. Probability on Trees and Networks. Cambridge Series in Sta- tistical and Probabilistic Mathematics. Cambridge University Press, 2017. 5, 13, 14, 15, 39
  27. Péter Maga. Full dimensional sets without given patterns. Real Anal. Exchange, 36(1):79-90, 2010/11. 3, 54
  28. András Máthé. Sets of large dimension not containing polynomial configurations. Adv. Math. to appear. Preprint available at http://arxiv.org/1201.0548,. 53
  29. Pertti Mattila. Geometry of sets and measures in Euclidean spaces, volume 44 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1995. Fractals and rectifiability. 39
  30. Ursula Molter and Alexia Yavicoli. Small sets containing any pattern. Preprint, available at http://arxiv.org/1610.03804, 2016. 2
  31. Yuval Peres and Micha l Rams. Projections of the natural measure for percolation fractals. Israel J. Math., 214(2):539-552, 2016. 9
  32. Micha l Rams and Károly Simon. The Dimension of Projections of Fractal Percolations. J. Stat. Phys., 154(3):633-655, 2014. 6, 51
  33. K. F. Roth. On certain sets of integers. J. London Math. Soc., 28:104-109, 1953. 2
  34. Mathias Schacht. Extremal results for random discrete structures. Ann. of Math. (2), 184(2):333-365, 2016. 4, 7
  35. Pablo Shmerkin. Salem sets with no arithmetic progressions. International Mathematics Re- search Notices. to appear. Published online https://doi.org/10.1093/imrn/rnr085. 3
  36. Pablo Shmerkin and Ville Suomala. A class of random measures, with applica- tions. In Proceedings of the FARF III conference. to appear. Preprint available at https://arxiv.org/abs/1603.08156. 8, 24, 28
  37. Pablo Shmerkin and Ville Suomala. Spatially independent martingales, intersec- tions, and applications. Mem. Amer. Math. Soc. to appear. Preprint available at http://arxiv.org/abs/1409.6707. 4, 6, 8, 9, 17, 19, 22, 25, 33, 41, 57
  38. Pablo Shmerkin and Ville Suomala. Sets which are not tube null and intersection properties of random measures. J. Lond. Math. Soc. (2), 91(2):405-422, 2015. 25
  39. E. Szemerédi. On sets of integers containing no k elements in arithmetic progression. Acta Arith., 27:199-245, 1975. Collection of articles in memory of Juriȋ Vladimirovič Linnik. 2
  40. Thomas Wolff. Decay of circular means of Fourier transforms of measures. Internat. Math. Res. Notices, (10):547-567, 1999. 3