Academia.eduAcademia.edu

Outline

Simple tracially 𝒵-absorbing C*-algebras

2021

https://doi.org/10.48550/ARXIV.2109.05192

Abstract

We define a notion of tracial 𝒵-absorption for simple not necessarily unital C*-algebras. This extends the notion defined by Hirshberg and Orovitz for unital (simple) C*-algebras. We provide examples which show that tracially 𝒵-absorbing C*-algebras need not be 𝒵-absorbing. We show that tracial 𝒵-absorption passes to hereditary C*-subalgebras, direct limits, matrix algebras, minimal tensor products with arbitrary simple C*-algebras. We find sufficient conditions for a simple, separable, tracially 𝒵-absorbing C*-algebra to be 𝒵-absorbing. We also study the Cuntz semigroup of a simple tracially 𝒵-absorbing C*-algebra and prove that it is almost unperforated and weakly almost divisible.

References (61)

  1. M. Amini, N. Golestani, S. Jamali, N. C. Phillips, Finite group actions on simple tracially Z-absorbing C*-algebras, in preparation.
  2. P. Ara, F. Perera, and A. S. Toms, K-theory for operator algebras. Classification of C*-algebras, pages 1-71 in: Aspects of Operator Algebras and Applications, P. Ara, F Lledó, and F. Perera (eds.), Contemporary Mathematics vol. 534, Amer. Math. Soc., Providence RI, 2011.
  3. D. Archey, J. Buck, and N. C. Phillips, Centrally large subalgebras and tracial Z- absorption, International Mathematics Research Notices 292(2017), 1-21.
  4. D. Archey and N. C. Phillips, Permanence of stable rank one for centrally large subalgebras and crossed products by minimal homeomorphisms, J. Operator Th. 83 (2020), 353-389.
  5. D. Avitzour, Free products of C*-algebras, Trans. Amer. Math. Soc. 271(1982), 423- 435.
  6. B. Blackadar, Weak expectations and nuclear C*-algebras, Indiana Univ. Math. J. 27(1978), 1021-1026.
  7. B. Blackadar, Operator algebras. Theory of C*-Algebras and von Neumann Alge- bras, Encyclopaedia of Mathematical Sciences, vol. 122: Operator Algebras and Non- commutative Geometry, III , Springer-Verlag, Berlin, 2006.
  8. B. Blackadar and D. Handelman, Dimension functions and traces on C*-algebras, J. Funct. Anal. 45(1982), 297-340.
  9. B. Blackadar, L. Robert, A. P. Tikuisis, A. S. Toms, and W. Winter, An algebraic approach to the radius of comparison, Trans. Amer. Math. Soc. 364(2002), 3657- 3674.
  10. L. Barnett, Free product von Neumann algebras of type III, Proc. Amer. Math. Soc. 123(1995), 543-553.
  11. L. G. Brown, Stable isomorphism of hereditary subalgebras of C*-algebras, Pacific J. Math. 71(1977), 335-348.
  12. L. G. Brown and G. K. Pedersen, C*-algebras of real rank zero, J. Funct. Anal. 99(1991), 131-149.
  13. J. Castillejos and S. Evington, Nuclear dimension of stably projectionless C*-algebras, Anal. PDE. 13(7) (2020), 2205-2240.
  14. J. Castillejos, S. Evington, A. Tikuisis, S. White and W. Winter, Nuclear dimension of simple C*-algebras, Invent. Math. (2020), https://doi.org/10.1007/s00222-020-01013- 1.
  15. J. Castillejos, S. Evington, A. Tikuisis and S. White, Uniform Property Γ, to appear in International Mathematics Research Notices, https://doi.org/10.1093/imrn/rnaa282.
  16. J. Cuntz, K-theory for certain C*-algebras, Ann. Math. 113(1981), 181-197.
  17. K. J. Dykema, Purely infinite, simple C*-algebras arising from free product construc- tions, II , Math. Scand. 90(2002), 73-86.
  18. K. J. Dykema and M. Rørdam, Purely infinite simple C*-algebras arising from free product constructions, Canad. J. Math. 50(1998), 323-341.
  19. G. A. Elliott, G. Gong, H. Lin, and Z. Niu, Simple stably projectionless C*-algebras with generalized tracial rank one, J. Noncommut. Geom. 14 (2020), 251-347.
  20. G. A. Elliott, L. Robert, and L. Santiago, The cone of lower semicontinuous traces on a C*-algebra, Amer. J. Math. 133(2011), 969-1005.
  21. M. Forough and N. Golestani, The weak tracial Rokhlin property for finite group actions on simple C*-algebras Doc. Math. 25(2020), 2507-2552.
  22. G. Gong and H. Lin, On classification of non-unital simple amenable C*-algebras, I , preprint 2017 (arXiv: 1611.04440v3 [math.OA]).
  23. U. Haagerup, Quasitraces on exact C*-algebras are traces C. R. Math. Rep. Acad. Sci. Canada 36 (2014), 67-92.
  24. I. Hirshberg and J. Orovitz, Tracially Z-absorbing C*-algebras, J. Funct. Anal. 265(2013), 765-785.
  25. I. Hirshberg and N. C. Phillips, Rokhlin dimension: obstructions and permanence properties, Doc. Math. 20(2015), 199-236.
  26. B. Jacelon, A simple, monotracial, stably projectionless C*-algebra, J. London Math. Soc. (2) 87(2013), 365-383.
  27. J. A. Jeong and H. Osaka, Extremally rich C*-crossed products and the cancellation property, J. Austral. Math. Soc. (Series A) 64(1998), 285-301.
  28. X. Jiang and H. Su, On a simple unital projectionless C*-algebra, Amer. J. Math. 121(1999), 359-413.
  29. D. Kerr, Dimension, comparison, and almost finiteness, to appear in J. Eur. Math. Soc., https://doi.org/10.4171/JEMS/995.
  30. E. Kirchberg and M. Rørdam, Non-simple purely infinite C*-algebras, Amer. J. Math. 122(2000), 637-666.
  31. E. Kirchberg and M. Rørdam, Infinite non-simple C*-algebras: absorbing the Cuntz algebra O∞, Adv. Math. 167(2002), 195-264.
  32. E. Kirchberg and W. Winter, Covering dimension and quasidiagonality, International J. Math. 15(2004), 63-85.
  33. A. Kishimoto, Outer automorphisms and reduced crossed products of simple C*- algebras, Commun. Math. Phys. 81(1981), 429-435.
  34. H. Lin, Tracially AF C*-algebras, Trans. Amer. Math. Soc. 353(2001), 693-722.
  35. H. Lin, The tracial topological rank of C*-algebras, Proc. London Math. Soc. 83(2001), 199-234.
  36. H. Lin, An Introduction to the Classification of Amenable C*-Algebras, World Scien- tific, River Edge NJ, 2001.
  37. H. Lin and Z. Niu, Lifting KK-elements, asymptotic unitary equivalence and classifi- cation of simple C*-algebras, Advances in Math. 219(2008), 1729-1769.
  38. H. Lin and H. Osaka, Tracially quasidiagonal extensions and topological stable rank , Illinois J. Math 47(2003), 921-937.
  39. H. Matui and Y. Sato, Strict comparison and Z-absorption of nuclear C*-algebras, Acta Math. 209(2012), 179-196.
  40. Z. Niu and Q. Wang, A tracially AF algebra which is not Z-stable, Münster J. of Math. 14 (2021), 41-57.
  41. N. Nawata, Finite group actions on certain stably projectionless C*-algebras with the Rohlin property, Trans. Amer. Math. Soc. 368(2016), 471-493.
  42. J. Orovitz, N. C. Phillips, and Q. Wang, Strict comparison and crossed products, in preparation.
  43. H. Osaka and N. C. Phillips, Stable and real rank for crossed products by automor- phisms with the tracial Rokhlin property, Ergod. Th. Dynam. Sys. 26(2006), 1579- 1621.
  44. G. K. Pedersen, C*-Algebras and their Automorphism Groups, Academic Press, Lon- don, New York, San Francisco, 1979.
  45. N. C. Phillips, Freeness of actions of finite groups on C*-algebras, pages 217-257 in: Operator structures and dynamical systems, M. de Jeu, S. Silvestrov, C. Skau, and J. Tomiyama (eds.), Contemporary Mathematics vol. 503, Amer. Math. Soc., Providence RI, 2009.
  46. N. C. Phillips, Finite cyclic group actions with the tracial Rokhlin property, Trans. Amer. Math. Soc. 367(2015), 5271-5300.
  47. N. C. Phillips, Large subalgebras, preprint (arXiv: 1408.5546v1 [math.OA]).
  48. I. Raeburn and D. P. Williams, Morita Equivalence and Continuous-Trace C*- Algebras, Mathematical Surveys and Monographs no. 60, American Mathematical Society, Providence RI, 1998.
  49. S. Razak, On the classification of simple stably projectionless C*-algebras, Canad. J. Math. 54(2002), 138-224.
  50. M. Rørdam, On the structure of simple C*-algebras tensored with a UHF-algebra, J. Funct. Anal. 100(1991), 1-17.
  51. M. Rørdam, Classification of nuclear, simple C*-algebras, pages 1-145 of: M. Rørdam and E. Størmer, Classification of nuclear C*-algebras. Entropy in operator algebras, Encyclopaedia of Mathematical Sciences vol. 126, Springer-Verlag, Berlin, 2002.
  52. M. Rørdam, The stable and the real rank of Z-absorbing C*-algebras, Internat. J. Math. 15(2004), 1065-1084.
  53. M. Rørdam, personal communication to N. Golestani.
  54. J. Rosenberg, Appendix to O. Bratteli's paper on "Crossed products of UHF algebras", Duke Math. J. 46(1979), 25-26.
  55. L. Santiago, Crossed products by actions of finite groups with the Rokhlin property, Internat. J. Math. 26(2015), no. 7, 1550042, 31 pp.
  56. A. Tikuisis, Nuclear dimension, Z-stability, and algebraic simplicity for stably pro- jectionless C*-algebras, Math. Ann. 358(2014), 729-778.
  57. A. S. Toms and W. Winter, Strongly self-absorbing C*-algebras, Trans. Amer. Math. Soc. 359(2007), 3999-4029.
  58. N. E. Wegge-Olsen, K-Theory and C*-Algebras, Oxford University Press, Oxford, 1993.
  59. W. Winter, Nuclear dimension and Z-stability of pure C*-algebras, Invent. Math. 187(2012), 259-342.
  60. W. Winter, Localizing the Elliott conjecture at strongly self-absorbing C*-algebras, J. reine angew. Math. 692(2014), 193-231.
  61. W. Winter and J. Zacharias, Completely positive maps of order zero, Münster J. Math. 2(2009), 311-324.