Abstract
We define a notion of tracial 𝒵-absorption for simple not necessarily unital C*-algebras. This extends the notion defined by Hirshberg and Orovitz for unital (simple) C*-algebras. We provide examples which show that tracially 𝒵-absorbing C*-algebras need not be 𝒵-absorbing. We show that tracial 𝒵-absorption passes to hereditary C*-subalgebras, direct limits, matrix algebras, minimal tensor products with arbitrary simple C*-algebras. We find sufficient conditions for a simple, separable, tracially 𝒵-absorbing C*-algebra to be 𝒵-absorbing. We also study the Cuntz semigroup of a simple tracially 𝒵-absorbing C*-algebra and prove that it is almost unperforated and weakly almost divisible.
References (61)
- M. Amini, N. Golestani, S. Jamali, N. C. Phillips, Finite group actions on simple tracially Z-absorbing C*-algebras, in preparation.
- P. Ara, F. Perera, and A. S. Toms, K-theory for operator algebras. Classification of C*-algebras, pages 1-71 in: Aspects of Operator Algebras and Applications, P. Ara, F Lledó, and F. Perera (eds.), Contemporary Mathematics vol. 534, Amer. Math. Soc., Providence RI, 2011.
- D. Archey, J. Buck, and N. C. Phillips, Centrally large subalgebras and tracial Z- absorption, International Mathematics Research Notices 292(2017), 1-21.
- D. Archey and N. C. Phillips, Permanence of stable rank one for centrally large subalgebras and crossed products by minimal homeomorphisms, J. Operator Th. 83 (2020), 353-389.
- D. Avitzour, Free products of C*-algebras, Trans. Amer. Math. Soc. 271(1982), 423- 435.
- B. Blackadar, Weak expectations and nuclear C*-algebras, Indiana Univ. Math. J. 27(1978), 1021-1026.
- B. Blackadar, Operator algebras. Theory of C*-Algebras and von Neumann Alge- bras, Encyclopaedia of Mathematical Sciences, vol. 122: Operator Algebras and Non- commutative Geometry, III , Springer-Verlag, Berlin, 2006.
- B. Blackadar and D. Handelman, Dimension functions and traces on C*-algebras, J. Funct. Anal. 45(1982), 297-340.
- B. Blackadar, L. Robert, A. P. Tikuisis, A. S. Toms, and W. Winter, An algebraic approach to the radius of comparison, Trans. Amer. Math. Soc. 364(2002), 3657- 3674.
- L. Barnett, Free product von Neumann algebras of type III, Proc. Amer. Math. Soc. 123(1995), 543-553.
- L. G. Brown, Stable isomorphism of hereditary subalgebras of C*-algebras, Pacific J. Math. 71(1977), 335-348.
- L. G. Brown and G. K. Pedersen, C*-algebras of real rank zero, J. Funct. Anal. 99(1991), 131-149.
- J. Castillejos and S. Evington, Nuclear dimension of stably projectionless C*-algebras, Anal. PDE. 13(7) (2020), 2205-2240.
- J. Castillejos, S. Evington, A. Tikuisis, S. White and W. Winter, Nuclear dimension of simple C*-algebras, Invent. Math. (2020), https://doi.org/10.1007/s00222-020-01013- 1.
- J. Castillejos, S. Evington, A. Tikuisis and S. White, Uniform Property Γ, to appear in International Mathematics Research Notices, https://doi.org/10.1093/imrn/rnaa282.
- J. Cuntz, K-theory for certain C*-algebras, Ann. Math. 113(1981), 181-197.
- K. J. Dykema, Purely infinite, simple C*-algebras arising from free product construc- tions, II , Math. Scand. 90(2002), 73-86.
- K. J. Dykema and M. Rørdam, Purely infinite simple C*-algebras arising from free product constructions, Canad. J. Math. 50(1998), 323-341.
- G. A. Elliott, G. Gong, H. Lin, and Z. Niu, Simple stably projectionless C*-algebras with generalized tracial rank one, J. Noncommut. Geom. 14 (2020), 251-347.
- G. A. Elliott, L. Robert, and L. Santiago, The cone of lower semicontinuous traces on a C*-algebra, Amer. J. Math. 133(2011), 969-1005.
- M. Forough and N. Golestani, The weak tracial Rokhlin property for finite group actions on simple C*-algebras Doc. Math. 25(2020), 2507-2552.
- G. Gong and H. Lin, On classification of non-unital simple amenable C*-algebras, I , preprint 2017 (arXiv: 1611.04440v3 [math.OA]).
- U. Haagerup, Quasitraces on exact C*-algebras are traces C. R. Math. Rep. Acad. Sci. Canada 36 (2014), 67-92.
- I. Hirshberg and J. Orovitz, Tracially Z-absorbing C*-algebras, J. Funct. Anal. 265(2013), 765-785.
- I. Hirshberg and N. C. Phillips, Rokhlin dimension: obstructions and permanence properties, Doc. Math. 20(2015), 199-236.
- B. Jacelon, A simple, monotracial, stably projectionless C*-algebra, J. London Math. Soc. (2) 87(2013), 365-383.
- J. A. Jeong and H. Osaka, Extremally rich C*-crossed products and the cancellation property, J. Austral. Math. Soc. (Series A) 64(1998), 285-301.
- X. Jiang and H. Su, On a simple unital projectionless C*-algebra, Amer. J. Math. 121(1999), 359-413.
- D. Kerr, Dimension, comparison, and almost finiteness, to appear in J. Eur. Math. Soc., https://doi.org/10.4171/JEMS/995.
- E. Kirchberg and M. Rørdam, Non-simple purely infinite C*-algebras, Amer. J. Math. 122(2000), 637-666.
- E. Kirchberg and M. Rørdam, Infinite non-simple C*-algebras: absorbing the Cuntz algebra O∞, Adv. Math. 167(2002), 195-264.
- E. Kirchberg and W. Winter, Covering dimension and quasidiagonality, International J. Math. 15(2004), 63-85.
- A. Kishimoto, Outer automorphisms and reduced crossed products of simple C*- algebras, Commun. Math. Phys. 81(1981), 429-435.
- H. Lin, Tracially AF C*-algebras, Trans. Amer. Math. Soc. 353(2001), 693-722.
- H. Lin, The tracial topological rank of C*-algebras, Proc. London Math. Soc. 83(2001), 199-234.
- H. Lin, An Introduction to the Classification of Amenable C*-Algebras, World Scien- tific, River Edge NJ, 2001.
- H. Lin and Z. Niu, Lifting KK-elements, asymptotic unitary equivalence and classifi- cation of simple C*-algebras, Advances in Math. 219(2008), 1729-1769.
- H. Lin and H. Osaka, Tracially quasidiagonal extensions and topological stable rank , Illinois J. Math 47(2003), 921-937.
- H. Matui and Y. Sato, Strict comparison and Z-absorption of nuclear C*-algebras, Acta Math. 209(2012), 179-196.
- Z. Niu and Q. Wang, A tracially AF algebra which is not Z-stable, Münster J. of Math. 14 (2021), 41-57.
- N. Nawata, Finite group actions on certain stably projectionless C*-algebras with the Rohlin property, Trans. Amer. Math. Soc. 368(2016), 471-493.
- J. Orovitz, N. C. Phillips, and Q. Wang, Strict comparison and crossed products, in preparation.
- H. Osaka and N. C. Phillips, Stable and real rank for crossed products by automor- phisms with the tracial Rokhlin property, Ergod. Th. Dynam. Sys. 26(2006), 1579- 1621.
- G. K. Pedersen, C*-Algebras and their Automorphism Groups, Academic Press, Lon- don, New York, San Francisco, 1979.
- N. C. Phillips, Freeness of actions of finite groups on C*-algebras, pages 217-257 in: Operator structures and dynamical systems, M. de Jeu, S. Silvestrov, C. Skau, and J. Tomiyama (eds.), Contemporary Mathematics vol. 503, Amer. Math. Soc., Providence RI, 2009.
- N. C. Phillips, Finite cyclic group actions with the tracial Rokhlin property, Trans. Amer. Math. Soc. 367(2015), 5271-5300.
- N. C. Phillips, Large subalgebras, preprint (arXiv: 1408.5546v1 [math.OA]).
- I. Raeburn and D. P. Williams, Morita Equivalence and Continuous-Trace C*- Algebras, Mathematical Surveys and Monographs no. 60, American Mathematical Society, Providence RI, 1998.
- S. Razak, On the classification of simple stably projectionless C*-algebras, Canad. J. Math. 54(2002), 138-224.
- M. Rørdam, On the structure of simple C*-algebras tensored with a UHF-algebra, J. Funct. Anal. 100(1991), 1-17.
- M. Rørdam, Classification of nuclear, simple C*-algebras, pages 1-145 of: M. Rørdam and E. Størmer, Classification of nuclear C*-algebras. Entropy in operator algebras, Encyclopaedia of Mathematical Sciences vol. 126, Springer-Verlag, Berlin, 2002.
- M. Rørdam, The stable and the real rank of Z-absorbing C*-algebras, Internat. J. Math. 15(2004), 1065-1084.
- M. Rørdam, personal communication to N. Golestani.
- J. Rosenberg, Appendix to O. Bratteli's paper on "Crossed products of UHF algebras", Duke Math. J. 46(1979), 25-26.
- L. Santiago, Crossed products by actions of finite groups with the Rokhlin property, Internat. J. Math. 26(2015), no. 7, 1550042, 31 pp.
- A. Tikuisis, Nuclear dimension, Z-stability, and algebraic simplicity for stably pro- jectionless C*-algebras, Math. Ann. 358(2014), 729-778.
- A. S. Toms and W. Winter, Strongly self-absorbing C*-algebras, Trans. Amer. Math. Soc. 359(2007), 3999-4029.
- N. E. Wegge-Olsen, K-Theory and C*-Algebras, Oxford University Press, Oxford, 1993.
- W. Winter, Nuclear dimension and Z-stability of pure C*-algebras, Invent. Math. 187(2012), 259-342.
- W. Winter, Localizing the Elliott conjecture at strongly self-absorbing C*-algebras, J. reine angew. Math. 692(2014), 193-231.
- W. Winter and J. Zacharias, Completely positive maps of order zero, Münster J. Math. 2(2009), 311-324.