Academia.eduAcademia.edu

Outline

Metafinite Model Theory

1998, Information and Computation

https://doi.org/10.1006/INCO.1997.2675

Abstract

Motivated by computer science challenges, we suggest to extend the approach and methods of finite model theory beyond finite structures. We study definability issues and their relation to complexity on metafinite structures which typically consist of (i) a primary part, which is a finite structure, (ii) a secondary part, which is a (usually infinite) structure that can be viewed as a structured domain of numerical objects, and (iii) a set of``weight'' functions from the first part into the second. We discuss model-theoretic properties of metafinite structures, present results on descriptive complexity, and sketch some potential applications.

References (61)

  1. Proposition 6.1. Let R=(R, 0, 1, 1 REFERENCES
  2. Abiteboul, S., Hull, R., and Vianu, V. (1994), ``Foundations of Databases,'' Addison Wesley, Reading, MA.
  3. Abiteboul, S., and Vianu, V. (1991), Generic computation and its complexity, in ``Proceedings of 23rd ACM Symposium on Theory of Computing,'' pp. 209 219.
  4. Adleman, L., and Manders, K. (1975), Computational complexity of decision problems for poly- nomials, in ``Proceedings of 16th IEEE Symposium on Foundations of Computer Science,'' pp. 169 177.
  5. Adleman, L., and Manders, K. (1976), Diophantine complexity, in ``Proceedings of 17th IEEE Sym- posium on Foundations of Computer Science,'' pp. 81 88.
  6. Arora, S., Lund, C., Motwani, R, Sudan, M., and Szegedy, M. (1992), Proof verification and intrac- tability of approximation problems, in ``Proceedings of 33rd IEEE Symposium on Foundations of Computer Science,'' pp. 210 214.
  7. Barwise, J. (1977), On Moschovakis closure ordinals, J. Symbolic Logic 42, 292 296.
  8. Bo rger, E., Gra del, E., and Gurevich, Y. (1997), ``The Classical Decision Problem,'' Springer-Verlag, Berlin.
  9. Belegradek, O., Stolboushkin, A., and Taitslin, M. (1996), Extended order-generic queries, preprint.
  10. Benedikt, M., Dong, G., Libkin, L., and Wong, L. (1996). Relational expressive power of constraint query languages, in ``Proc. 15th ACM Symp. on Principles of Database Systems PODS,'' pp. 5 16.
  11. Blum, L., Shub, M., and Smale, S. (1989), On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines, Bull. Amer. Math. Soc. 21, 1 46.
  12. Bo rger, E., and Huggins, J. (1998), Annotated bibliography on abstract state machines (ASMs), Bull. EATCS 64.
  13. Cai, J., Fu rer, M., and Immerman, N. (1989), An optimal lower bound on the number of variables for graph identification, in ``Proceedings of 30th IEEE Symposium on Foundations of Computer Science,'' pp. 612 617.
  14. Chandra, A., and Harel, D. (1980), Computable queries for relational data bases, J. Comput. System Sci. 21, 156 178.
  15. Compton, K. (1988), 0 1 laws in logic and combinatorics, in ``NATO Adv. Study Inst. on Algo- rithms and Order'' (I. Rival, Ed.), pp. 353 383.
  16. Compton, K., Henson, C., and Shelah, S. (1987), Nonconvergence, undecidability and intractability in asymptotic problems, Ann. Pure Appl. Logic 36, 207 224.
  17. Crescenzi, P., and Kann, V. (1995), ``A Compendium of NP Optimization Problems,'' Technical Report SIÂRR-95Â-02, Dipartimento di Scienze dell'Informazione, UniversitaÁ di Roma ``La Sapienza''.
  18. Dawar, A. (1993), ``Feasible Computation through Model Theory,'' Ph.D. thesis, University of Pennsylvania.
  19. de Rougemont, M. (1995), The reliability of queries, in ``Proc. 14th ACM Symp. on Principles of Database Systems PODS.''
  20. Ebbinghaus, H.-D., and Flum, J. (1995), ``Finite Model Theory,'' Springer-Verlag, Berlin.
  21. Fagin, R. (1974), Generalized first-order spectra and polynomial-time recognizable sets, SIAM AMS Proc. 7, 43 73.
  22. Fagin, R. (1993), Finite model theory A personal retrospective, Theoret. Comput. Sci. 116, 3 31.
  23. Gra del, E., and Malmstro m, A. (1997), 0 1 laws for recursive structures, Archive Math. Logic, in press.
  24. Gra del, E., and Meer, K. (1995), Descriptive complexity theory over the real numbers, in ``Proceedings of 27th ACM Symposium on Theory of Computing, STOC '95, Las Vegas'' [An expanded version appeared in Renegar, J., Shub, M., and Smale, S. (Eds.) (1996), ``Mathematics of Numerical Analysis: Real Number Algorithms,'' AMS Lectures in Applied Mathematics 32, pp. 381 403].
  25. Gra del, E., and Otto, M. (1993), Inductive definability with counting on finite structures, in ``Selected Papers, 6th Workshop on Computer Science Logic CSL 92, San Miniato 1992,'' Lecture Notes in Computer Science, Vol. 702, pp. 231 247, Springer-Verlag, Berlin.
  26. Gross, J., and Tucker, T. (1987), ``Topological Graph Theory,'' Wiley, New York.
  27. Grumbach, S., and Su, J. (1994), Finitely representable databases, in ``Proceedings of 13th ACM Symposium on Principles of Database Systems.''
  28. Gurevich, Y. (1984), Toward logic tailord for computational complexity, in ``Computation and Proof Theory'' (M. M. Richter et al., Eds.), Lecture Notes in Mathematics, Vol. 1104, pp. 175 216, Springer-Verlag, Berlin.
  29. Gurevich, Y. (1988), Logic and the challenge of computer science, in ``Trends in Theoretical Com- puter Science, Computer'' (E. Bo rger, Ed.), pp. 1 57, Computer Science Press.
  30. Gurevich, Y. (1995), Evolving algebras 1993: Lipari guide, in ``Specification and Validation Methods'' (E. Bo rger, Ed.), Oxford Univ. Press, London.
  31. Gurevich, Y., and Shelah, S. (1986), Fixed point extensions of first order logic, Ann. Pure Appl. Logic 32, 265 280.
  32. Hirst, T., and Harel, D. (1996), Completeness results for recursive databases, J. Comput. System Sci. 52, 522 536.
  33. Hirst, T., and Harel, D. (1996), More about recursive structures: Zero-one laws and expressibility vs complexity, in ``Proceedings of 11th IEEE Symposium on Logic in Computer Science.''
  34. Hodgson, B., and Kent, C. (1983), A normal form for arithmetical representation of NP-sets, J. Comput. System Sci. 27, 378 388.
  35. Immerman, N. (1982), Upper and lower bounds for first-order expressibility, J. Comput. Systems Sci. 25, 86 104.
  36. Immerman, N. (1986), Relational queries computable in polynomial time, Information Control 68, 86 104.
  37. Immerman, N. (1987), Expressibility as a complexity measure: results and directions, in ``Proc. of 2nd Conf. on Structure in Complexity Theory,'' pp. 194 202.
  38. Immerman, N. (1989), Descriptive and computational complexity, in ``Computational Complexity Theory'' (J. Hartmanis, Ed.), Proc. of AMS Symposia in Appl. Math., Vol. 38, pp. 75 91.
  39. Immerman, N., and Lander, E. (1990), Describing graphs: A first order approach to graph canoniza- tion, in ``Complexity Theory Retrospective. (In Honor of Juris Hartmanis)'' (A. Selman, Ed.), pp. 59 81, Springer-Verlag, New York.
  40. Jones, J., and Matijasevich, Y. (1984), Register machine proof of the theorem of exponential diophantine representation of enumerable sets, J. Symbolic Logic 49, 818 829.
  41. Kabanza, F., Ste venne, J., and Wolper, P. (1995), Handling infinite temporal data, J. Comput. System Sci. 51, 3 17.
  42. Kanellakis, P. (1990), Elements of relational database theory, in ``Handbook of Theoretical Com- puter Science'' (J. van Leeuwen, Ed.), Vol. B, pp. 1073 1156, North-Holland, Amsterdam.
  43. Kanellakis, P., Kuper, G., Revesz, P. (1990), Constraint query languages, in ``Proceedings of 9th ACM Symposium on Principles of Database Systems,'' pp. 299 313.
  44. Kent, C., and Hodgson, B. (1982), An arithmetical characterization of NP, Theoret. Comput. Sci. 12, 255 267.
  45. Lynch, J. (1980), Almost sure theories, Ann. Math. Logic 18, 91 135.
  46. Malmstro m, A. (1996), ``Logic and Approximation,'' Ph.D. thesis, RWTH Aachen.
  47. Matijasevich, Y. (1993), ``Hilbert's Tenth Problem,'' MIT Press, Cambridge, MA.
  48. Otto, M. (1994), Generalized quantifiers for simple properties, in ``Proceedings of IEEE Symposium on Logic in Computer Science,'' pp. 30 39.
  49. Otto, M. (1996), The expressive power of fixed-point logic with counting, J. Symbolic Logic 61, 147 176.
  50. Otto, M. (1997), ``Bounded Variable Logic with Counting. A Study on Finite Models,'' Lecture Notes in Logic 9, Springer-Verlag, Berlin.
  51. Papadimitriou, C. (1994), ``Computational Complexity,'' Addison Wesley, Reading, MA.
  52. Papadimitriou, C., and Yannakakis, M. (1991), Optimization, approximization and complexity classes, J. Comput. System Sci. 43, 425 440.
  53. Poizat, B. (1982), Deux ou trois choses que je sais de L n , J. Symbolic Logic 47, 641 658.
  54. Shelah, S. (1994), The very weak zero-one law for random graphs with order and random binary functions, preprint.
  55. Spencer, J. (1991), Nonconvergence in the theory of random orders, Order 7, 341 348.
  56. Stolboushkin, A. (1996), Towards recursive model theory, preprint.
  57. Stolboushkin, A., and Taitslin, M. (1996), Linear vs. order constraint queries over rational databases, in ``Proc. 15th ACM Symp. on Principles of Database Systems PODS,'' pp. 17 27.
  58. Tyszkiewicz, J., private communication.
  59. Ullman, J. D. (1989), ``Database and Knowledge-Base Systems, Vol. I and II,'' Computer Science Press.
  60. Valiant, L. (1979), The complexity of enumeration and reliability problems, SIAM J. Comput. 8, 410 421.
  61. Vardi, M. (1982), Complexity of relational query languages, in ``Proc. of 14th Symposium on Theory of Computing,'' pp. 137 146.