Academia.eduAcademia.edu

Outline

On asymptotically symmetric Banach spaces

2006, Studia Mathematica

https://doi.org/10.4064/SM173-3-1

Abstract

A Banach space X is asymptotically symmetric (a.s.) if for some C < ∞, for all m ∈ N, for all bounded sequences (x i j ) ∞ j=1 ⊆ X, 1 ≤ i ≤ m, for all permutations σ of {1, . . . , m} and all ultrafilters U1, . . . , Um on N,

References (21)

  1. D.J. Aldous, Subspaces of L 1 via random measures, Trans. Amer. Math. Soc. 267 (1981), 445-453.
  2. S. Argyros, S. Negrepontis and Th. Zachariades, Weakly stable Banach spaces, Israel J. Math. 57 (1987), 68-88.
  3. G. Androulakis, E. Odell, Th. Schlumprecht and N. Tomczak-Jaegermann, On the structure of the spreading models of a Banach space, Canadian J. Math., to appear.
  4. B. Beauzamy and J.-T. Lapresté, Modèles étalés des espace de Banach, Travaux en Cours, Herman, Paris, 1984.
  5. P.G. Casazza and T.J. Shura, Tsirelson's space, Lecture Notes in Math. vol.1363, Springer-Verlag, Berlin and New York, 1989.
  6. L. Halbeisen and E. Odell, On asymptotic models in Banach spaces, Israel J. Math., to appear.
  7. M. Junge and H. Rosenthal, Asymptotic stability in noncommutative Lp spaces, in preparation.
  8. J.L. Krivine, Sous espaces de dimesion finie des espaces de Banach réticulés, Ann. of Math. (2) 104 (1976), 1-29.
  9. J.L. Krivine and B. Maurey, Espaces de Banach stables, Israel J. Math. 39 (1981), 273-295.
  10. D. Kutzarova and Pei-Kee Lin, Remarks about Schlumprecht's space, Proc. A.M.S. 128 (2000), 2059-2068.
  11. H. Knaust, E. Odell and Th. Schlumprecht, On asymptotic structure, the Szlenk index and UKK properties in Banach space, Positivity 3 (1999), 173-199.
  12. Pei-Kee Lin, private communication.
  13. A. Manoussakis, On the structure of certain class of mixed Tsirelson spaces, Positivity 5 (2000), 193-238.
  14. B. Maurey, V.D. Milman and N. Tomczak-Jaegermann, Asymptotic infinite-dimensional theory of Banach spaces, Oper. Theory: Adv. Appl. 77 (1994), 149-175.
  15. M-N] J. L. Marcolino-Nhany, La stabilité des espaces L p non-commutatifs, Math. Scand. 81 (1997) no. 2, 212-218.
  16. V.D. Milman and N. Tomczak-Jaegermann, Asymptotic p spaces and bounded distortions, Con- temp. Math. 144 (1993), 173-195.
  17. E. Odell and Th. Schlumprecht, Trees and branches in Banach spaces, Trans. A.M.S. 354 (2002), 4085-4108.
  18. B. Sari, Envelope functions and asymptotic structures in Banach spaces, Studia Math. 164 (2004), 283-306.
  19. Th. Schlumprecht, An arbitrarily distortable Banach space, Israel J. Math. 76 (1991), 81-95.
  20. Th. Schlumprecht, A complementably minimal Banach space not containing c0 or p, Seminar Notes in Functional Analysis and PDE's, LSU, 1991-92, 169-181.
  21. L. Tzafriri, On the type and cotype of Banach spaces, Israel J. Math. 32 (1979), 32-38.