Academia.eduAcademia.edu

Outline

On Fine-Grained Exact Computation in Regular Graphs

2020

Abstract

We show that there is no subexponential time algorithm for computing the exact solution of the maximum independent set problem in $d$-regular graphs, for any constant $d>2$, unless ETH fails. We also discuss the extensions of our construction to other problems and other classes of graphs, including $5$-regular planar graphs.

References (13)

  1. N. Bourgeois, B. Escoffier, V. T. Paschos, and J. M. M. van Rooij. Fast algorithms for max independent set. Algorithmica, 62(1-2):382-415, 2012.
  2. E. D. Demaine, F. V. Fomin, M. T. Hajiaghayi, and D. M. Thilikos. Subexponential parameterized algorithms on graphs of bounded-genus and H -minor-free graphs. In J. I. Munro, editor, Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2004, New Orleans, Louisiana, USA, January 11-14, 2004, pages 830-839. SIAM, 2004.
  3. H. Fleischner, G. Sabidussi, and V. I. Sarvanov. Maximum independent sets in 3-and 4-regular hamiltonian graphs. Discrete Mathematics, 310(20):2742 -2749, 2010. Graph Theory -Dedicated to Carsten Thomassen on his 60th Birthday.
  4. F. V. Fomin, F. Grandoni, and D. Kratsch. A measure & conquer approach for the analysis of exact algorithms. J. ACM, 56(5):25:1-25:32, 2009.
  5. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.
  6. M. R. Garey, D. S. Johnson, and L. J. Stockmeyer. Some simplified np-complete graph problems. Theor. Comput. Sci., 1(3):237-267, 1976.
  7. R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential complexity? J. Comput. Syst. Sci., 63(4):512-530, 2001.
  8. D. S. Johnson and M. Szegedy. What are the least tractable instances of max tndependent set? In R. E. Tarjan and T. J. Warnow, editors, Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, 17-19 January 1999, Baltimore, Maryland, USA, pages 927-928. ACM/SIAM, 1999.
  9. B. Mohar. Face covers and the genus problem for apex graphs. J. Comb. Theory, Ser. B, 82(1):102-117, 2001.
  10. R. Paturi, P. Pudlák, M. E. Saks, and F. Zane. An improved exponential-time algorithm for k -sat. J. ACM, 52(3):337-364, 2005.
  11. J. M. Robson. Algorithms for maximum independent sets. J. Algorithms, 7(3):425- 440, 1986.
  12. M. Xiao and H. Nagamochi. Exact algorithms for maximum independent set. Inf. Comput., 255:126-146, 2017.
  13. D. Zuckerman. Linear degree extractors and the inapproximability of max clique and chromatic number. In STOC'06, volume 2006, pages 681-690, 9 2006.