Academia.eduAcademia.edu

Outline

High-Capacity Quantum Associative Memories

https://doi.org/10.4236/JAMP.2016.411207

Abstract

We review our models of quantum associative memories that represent the “quantization” of fully coupled neural networks like the Hopfield model. The idea is to replace the classical irreversible attractor dynamics driven by an Ising model with pattern-dependent weights by the reversible rotation of an input quantum state onto an output quantum state consisting of a linear superpo- sition with probability amplitudes peaked on the stored pattern closest to the input in Hamming distance, resulting in a high probability of measuring a memory pattern very similar to the input. The unitary operator implementing this transformation can be formulated as a sequence of one- qubit and two-qubit elementary quantum gates and is thus the exponential of an ordered quantum Ising model with sequential operations and with pattern-dependent interactions, exactly as in the classical case. Probabilistic quantum memories, that make use of postselection of the measurement result of control qubits, overcom...

References (44)

  1. See e.g.: Jeff Hawkins (with S. Blakeslee), On Intelligence, Times Books (2004), R. Kurzweil, How To Create A Mind, Penguins Books, London (2012) and references therein.
  2. See e.g.: C. M. Bishop, Pattern Recognition and Machine Learning, Springer Verlag, Singapore (2006).
  3. See e.g.: M. Davis, Engines of Logic: Mathematicians and the Origin of the Computer, W. W. Norton Company, New York (2000) and references therein.
  4. For a review see: M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge (2000);
  5. A. O. Pittenger, An Introdcution to Quantum Computing Algorithms, Birkhäuser, Boston (2000).
  6. For a review see: B. Müller and J. Reinhardt, Neural Networks, Springer-Verlag, Berlin (1990);
  7. T. Kohonen, Self-Organization and Associative Memmory, Springer-Verlag, Berlin (1984).
  8. For a review see: L. R. Rabiner, A Tutorial on Hidden Markov Models and Selected Applica- tions in Speech Recognition, Proc. of the IEEE 77 (1989) 257.
  9. J.J. Hopfield, Proc. Natl. Acad. Scie. USA 79, 2554 (1982).
  10. B. Kosko, IEEE Trans. on Systems, Man and Cybernetics 18, 49 (1988).
  11. See e.g.: H. Nishimori, Statistical Physics of Spin Glasses and Information Processing, Oxford Univerity Press, Oxford (2001).
  12. See e.g. M. Mezard, G. Parisi and M. A. Virasoro, Spin Glass Theory and Beyond, World Scientific, Singapore (1987).
  13. P. W. Shor, SIAM J. Computing 26 (1997) 1484.
  14. L. Grover, Phys. Rev. Lett. 79 (1997) 325.
  15. C. A. Trugenberger, Phys. Rev. Lett. 87 (2001) 067901, see also P. Ball, "Brain Inspires New Memories" Nature News, August 6 (2001).
  16. C. A. Trugenberger, Phys. Rev. Lett. 89 2002 277903.
  17. For a review see: C. A. Trugenberger, "Quantum Pattern Recognition", Quantum Inf. Process. 1 (2002) 471.
  18. M. Cristina Diamantini and C. A. Trugenberger, Phys. Rev. Lett. 97 (2006) 130503.
  19. M. Sasaki, A. Carlini and R. Jozsa, Phys. Rev. A64 (2001) 022317;
  20. M Sasaki and A. Carlini, Phys. Rev. A66 (2002) 022303 ; R. Schützhold, Phys. Rev. A67 (2003) 062311.
  21. N. Sourlas, Nature 339, 693 (1989);
  22. I. Kanter and D. Saad, Phys. Rev. Lett. 83, 2660 (1999);
  23. Y. Kabashima, T. Murayama and D. Saad, Phys. Rev. Lett. 84, 1355 (2000).
  24. Y. Kabashima, T. Murayama and D. Saad, Phys. Rev. Lett. 84 2030 (2000).
  25. W. S. McCullogh and W. Pitts, Bull. Math. Biophys. 5 (1943) 115
  26. O. Mandel, M. Greiner, A. Widera, T. Rom, T. W. Hänsch and I. Bloch, Nature 425 (2003) 937.
  27. B. E. Kane, Nature 393 (2003) 133.
  28. See e.g. G. Parisi, Statistical Field Theory, Addison-Wesley, Redwood City (1988).
  29. See e.g.: S. Sachdev, Quantum Phase Transitions, Cambridge University Press, Cambridge (1999).
  30. See e.g. A. Barenco, C. Bennet, R. Cleve, D. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. Smolin and H. Weinfurter, Phys. Rev. A52, 3457 (1995).
  31. A. S. Holevo, Problems of Information Transmission 9 (1973) 177.
  32. D. Ventura and T. Martinez, Found. Phys. Lett. 12 (1999) 547.
  33. Y. Tanaka, T. Ichikawa, M. Tada-Umezaki, Y. Ota and M. Nakahara, Int. J. Quant. Info. 9 (2011) 1363.
  34. W. Wootters and W. Zurek, Nature 299, 802 (1982).
  35. V. Buzek and M. Hillery, Phys. Rev. A54, 1844 (1996).
  36. N. Gisin and S. Massar, Phys. Rev. Lett. 79, 2153 (1997);
  37. D. Bruss, A. K. Ekert and C. Macchiavello, Phys. Rev. Lett. 81, 2598 (1998).
  38. D. Bruss, D. P. DiVincenzo, A. Ekert, C. A. Fuchs,C. Macchiavello and J. A. Smolin, Phys. Rev. 57 (1998) 2368.
  39. L.-M. Duan and G.-C. Guo, Phys. Rev. Lett. 80, (1998) 4999.
  40. A. Chefles and S. M. Barnett, Phys. Rev. A60, 136 (1999) 136.
  41. G. Brassard, P. Hoyer, M. Mosca and A. Tapp, Amplitude Amplification and Estimation, quant-ph/0005055.
  42. T. Brun, H. Klauck, A. Nayak, M. Roetteler and Ch. Zalka, Phys. Rev. Lett. 91 (2003) 209801.
  43. C. A Trugenberger, Phys. Rev. Lett. 91 (2003) 209802.
  44. G. L. Long, Phys. Rev. A64 (2001) 022307.