Academia.eduAcademia.edu

Outline

Semantic analysis of inductive reasoning

1986, Theoretical Computer Science

https://doi.org/10.1016/0304-3975(86)90167-2

Abstract

Inductive learning is analysed from the semantic point of view. Processes of forming generalisations of concepts determined by examples of expert decisions are discussed. It is claimed that since concepts are relative to background knowledge, their inductive generalisations can be determined only approximately. Induction t-files are defined providing a method of forming generalisations preserving positive and/or negative instances of concepts.

References (31)

  1. K. Ajdukiewicz, Logika Pragmatyezna (Pragmatic Logic) (PWN, Warsaw, 1965).
  2. R. Carnap, The aim of inductive logic, in: E. Nagel, P. Suppes and A. Tarski, eds., Logic, Methodology and Philosophy of Science (Stanford University Press, Stanford, 1962) 303-318.
  3. R. Carnap, The Continuum of Inductive Methods (The University of Chicago Press, Chicago, 1952).
  4. E.F. Codd, A relational model for large shared data banks, Comm. ACM 13 (1970) 377-387.
  5. P. Hajek and T. Havranek, Mechanizing Hypothesis Formation: Mathematical Foundations for a General Theory (Springer, Berlin, 1978).
  6. F. Hayes-Roth, Patterns of induction and associated knowledge acquisition algorithms, in" C. Chen, ed, Pattern Recognition and Artificial Intelligence (Academic Press, New York, 1976).
  7. F. Hayes-Roth and J. McDermott, An interference matching technique for inducing abstractions, Comm. ACM 21 (1978) 401-410.
  8. G.G. Hempel, Philosophy of Natural Science (Prentice-Hall, Englewood Cliffs, NJ, 1966).
  9. J. Hintikka, and P. Suppes, eds., Aspects of Inductive Logic (North-Holland, Amsterdam, 1966).
  10. E.B. Hunt, J. Matin and P. Stone, Experiments in Induction (Academic Press, New York, 1966).
  11. H. Kyburg, The Logical Foundations of Statistical Inference, Reidel Synthese Library 65 (Reidel, Dordrecht, 1974).
  12. I. Lakatos, ed., The Problem of Inductive Logic (North-Holland, Amsterdam, 1968).
  13. B. Me•tzer•Thesemantics•finducti•nandthep•ssibi•ity•fcomp•etesystems•finductiveinference• Artificial Intelligence 1 (1970) 189-192.
  14. R. Michalski, J.G. Carbonell and T.M. Mitchell, eds., Machine Learning, an Artificial Intelligence Approach (Tioga Publ., Palo Alto, CA, 1983).
  15. E. Minicozzi, Some natural properties of strong identification in inductive inference, Theoret. Comput. Sci. 2 (1976) 345-360.
  16. T.M. Mitchell, Generalization as search, Artificial Intelligence 18 (1982) 203-226.
  17. C.G. Morgan, Automated hypothesis generation using extended inductive resolution, Proc. 4th Internat. Joint Conf. on Artificial Intelligence, Tbilisi, U.S.S.R. (1975) 351-356.
  18. E. Orlowska, Representation of vague information, ICS PAS Rept. 503, Warsaw, 1963.
  19. E. Ortowska, Logic of nondeterministic information, Studia Logica (1984) to appear.
  20. E. Orlowska and Z. Pawlak, Logical foundations of knowledge representation, ICS PAS Rept. 537, Warsaw, 1984.
  21. Z. Pawlak, Information systems--theoretical foundations, Information Syst. 6 (1981) 205-218.
  22. Z. Pawlak, Rough sets, CompuL Inform. Sci. 11 (1982) 341-356.
  23. G.D. Plotkin, A note on inductive generalization, in: B. Meitzer and D. Michie, eds., Machine Intelligence 5 (American Elsevier, New York, 1970).
  24. G. Polya, Mathematics and Plausible Reasoning (Princeton University Press, Princeton, 1954).
  25. ICI~ Popper, The Logic of Scientific Discovery (Basic Books, New York, 1959).
  26. J.R. Quinlan, Discovering rules from large collections of examples: A case study, in: D. Michie, ed., Expert Systems in the Micro Electronic Age (Edinburgh University Press, Edinburgh, 1979).
  27. S.A. Vere, Induction of concepts in the predicate calculus, Proc. 4th lnternat. Joint Conf. on Artificial Intelligence, Tbilisi, U.S.S.R. (1975) 281-287.
  28. S.A. Vere, Inductive learning of relational productions, in: D. Waterman and F. Hayes-Roth, eds., Pattern Directed Inference Systems (Academic Press, New York, 1978).
  29. G. Von Wright, A Treatise on Induction and Probability (New York, 1951).
  30. P.H. Winston, Learning structural descriptions from examples, in: P.H. Winston, ed., The Psychology of Computer Vision (McGraw-Hill, New York, 1975).
  31. W. Zakowski, Approximations in the space (U, lr), Demonstratio Math. 16 (1983) 761-769.