A unifying view of knowledge representation for inductive learning
2000
Abstract
Abstract This paper provides a foundation for inductive learning based on the use of higherorder logic for knowledge representation.
References (54)
- The hypothesis language contains the following transformations. (==Br) :: Element -> Bool; . . (==S) :: Element -> Bool;
- AtomType -> Bool; . . (==195) :: AtomType -> Bool;
- <=-0.117) :: Charge -> Bool;
- <=-0.087) :: Charge -> Bool; (<=0.013) :: Charge -> Bool; (<=0.142) :: Charge -> Bool;
- >=-0.117) :: Charge -> Bool;
- >=-0.087) :: Charge -> Bool; (>=0.013) :: Charge -> Bool; (>=0.142) :: Charge -> Bool;
- Bond -> Bool;
- Bond -> Bool;
- Bond -> Bool;
- Bond -> Bool;
- Int -> Bool;
- Int -> Bool;
- Int -> Bool; projElement :: Atom -> Element; projAtomType :: Atom -> AtomType; projCharge :: Atom -> Charge;
- H. Blockeel and L. De Raedt. Top-down induction of logical decision trees. Available at 1997.
- H. Blockeel and L. De Raedt. Top-down induction of first-order logical decision trees. Artificial Intelligence, 101:285-297, 1998.
- L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. Classification and Regression Trees. Chapman and Hall, 1984.
- A.F. Bowers, C. Giraud-Carrier, and J.W. Lloyd. Classification of individuals with complex structure. In P. Langley, editor, Machine Learning: Proceedings of the Seven- teenth International Conference (ICML2000), pages 81-88. Morgan Kaufmann, 2000.
- M. Bongard. Pattern Recognition. Spartan Books, 1970.
- W.W. Cohen and H. Hirsh. Learning the CLASSIC description logic: Theoretical and experimental results. In Proceedings of the Fourth International Conference on Princi- ples of Knowledge Representation and Reasoning, pages 121-133. Morgan Kaufmann, 1994.
- A. Church. A formulation of the simple theory of types. Journal of Symbolic Logic, 5:56-68, 1940.
- W.W. Cohen. Rapid prototyping of ILP systems using explicit bias. In Proceedings of the IJCAI'93 Workshop on Inductive Logic Porgramming,
- W.W. Cohen. Learning trees and rules with set-valued features. In Proceedings of the Thirteenth National Conference on Artificial Intelligence, pages 709-716, Menlo Park, CA, 1996. AAAI Press.
- S. Džeroski, L. De Raedt, and H. Blockeel. Relational reinforcement learning. In Proceedings of the 15th International Conference on Machine Learning, ICML'98, pages 136-143. Morgan Kaufmann, 1998.
- S. Džeroski and P. Flach, editors. Proceedings of the International Workshop on Inductive Logic Programming, ILP'99, Lecture Notes in Artificial Intelligence, 1634. Springer-Verlag, 1999.
- T.G. Dietterich, R.H. Lathrop, and T. Lozano-Pérez. Solving the multiple instance problem with axis-parallel rectangles. Artificial Intelligence, 89:31-71, 1997.
- P. Flach, C. Giraud-Carrier, and J.W. Lloyd. Strongly typed inductive concept learn- ing. In Proceedings of the International Conference on Inductive Logic Programming, ILP'98, pages 185-194, 1998.
- P. Finn, S. Muggleton, D. Page, and A. Srinivasan. Pharmacophore discovery using inductive logic programming system PROGOL. Machine Learning, 30:241-270, 1998.
- L. Henkin. Completeness in the theory of types. Journal of Symbolic Logic, 15(2):81-91, 1950.
- Home page of ILP workshops. http://www.cs.york.ac.uk/ILP-events/.
- ILPb] Home page of ILPNET.
- C.J. Kennedy and C. Giraud-Carrier. An evolutionary approach to concept learn- ing with structured data. In Proceedings of the Fourth International Conference on Artificial Neural Networks and Genetic Algorithms (ICANNGA'99), pages 331-366. Springer-Verlag, 1999.
- C.J. Kennedy and C. Giraud-Carrier. Predicting chemical carcinogenesis using struc- tural information only. In Proceedings of the Third European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDDD'99), pages 360-365, 1999.
- R. King, S. Muggleton, S. Srinivasan, and M. Sternberg. Structure-activity relation- ships derived by machine learning: The use of atoms and their bond connectivities to predict mutagenicity in inductive logic programming. Proceedings of the National Academy of Sciences, 93:438-442, 1996.
- J.-U. Kietz and S. Wrobel. Controlling the complexity of learning in logic through syn- tactic and task-oriented models. In S. Muggleton, editor, Inductive Logic Programming, chapter 16, pages 335-359. Academic Press, 1992.
- J.W. Lloyd. Programming in an integrated functional and logic language. Journal of Functional and Logic Programming, 1999(3), March 1999.
- J.W. Lloyd. Knowledge representation, computation, and learning in higher-order logic. In preparation, 2000.
- J.W. Lloyd. Programming with abstractions. In preparation, 2000.
- S. Muggleton and L. De Raedt. Inductive logic programming: Theory and methods. Journal of Logic Programming, 19/20:629-679, 1994.
- R.S. Michalski. A theory and methodology of inductive learning. Artificial Intelligence, 20:111-116, 1983.
- T.M. Mitchell. Generalization as search. Artificial Intelligence, 18:203-226, 1982.
- T.M. Mitchell. Machine Learning. McGraw-Hill, 1997.
- R.S. Michalski and J.B. Larson. Inductive inference of VL decision rules. In Workshop on Pattern-directed Inference Systems, pages 34-44, 1977.
- O. Maron and T. Lozano-Pérez. A framework for multiple-instance learning. In M. Jor- dan, M. Kearns, and S. Solla, editors, in Neural Information Processing Sys- tems 10: Proceedings of the 1997 Conference, pages 570-576, Cambridge, MA, 1998. MIT Press.
- S. Muggleton and C.D. Page. Beyond first-order learning: Inductive learning with higher order logic. Technical Report PRG-TR-13-94, Oxford University Computing Laboratory, 1994.
- S. Muggleton. Inverse entailment and Progol. New Generation Computing, 13:245-286, 1995.
- F. Neri and L. Saitta. Knowledge representation in machine learning. In F. Bergadano and L. De Raedt, editors, Proceedings of the European Conference on Machine Learn- ing, pages 20-27. Springer-Verlag, LNAI 784, 1994.
- G.D. Plotkin. A note on inductive generalisation. In B. Meltzer and D. Michie, editors, Machine Intelligence, volume 5, pages 153-163, 1969.
- J.R. Quinlan. Induction of decision trees. Machine Learning, 1:81-106, 1986. J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.
- J.R. Quinlan. Learning first-order definitions of functions. Journal of Artificial Intel- ligence Research, 5:139-161, 1996.
- C. Sammut. Learning Concepts by Performing Experiments. PhD thesis, University of South Wales, Australia, 1981.
- B. Schölkopf, C. Burges, and A. Smola. Advances in Kernel Methods: Support Vector Learning. MIT press, 1998.
- E. Y. Shapiro. Algorithmic Program Debugging. MIT Press, 1983.
- A. Srinivasan, R.D. King, and S.H. Muggleton. The role of background knowledge: us- ing a problem from chemistry to examine the performance of an ILP program. Available at http://www.comlab.ox.ac.uk/oucl/groups/machlearn/, 1999.
- A. Srinivasan, S. Muggleton, R. King, and M. Sternberg. Mutagenesis: ILP experiments in a non-determinate biological domain. In S. Wrobel, editor, Proceedings of Fourth Inductive Logic Programming Workshop. Gesellschaft für Mathematik und Datenver- arbeitung MBH, 1994. GMD-Studien Nr 237.