Academia.eduAcademia.edu

Outline

A unifying view of knowledge representation for inductive learning

2000

Abstract

Abstract This paper provides a foundation for inductive learning based on the use of higherorder logic for knowledge representation.

References (54)

  1. The hypothesis language contains the following transformations. (==Br) :: Element -> Bool; . . (==S) :: Element -> Bool;
  2. AtomType -> Bool; . . (==195) :: AtomType -> Bool;
  3. <=-0.117) :: Charge -> Bool;
  4. <=-0.087) :: Charge -> Bool; (<=0.013) :: Charge -> Bool; (<=0.142) :: Charge -> Bool;
  5. >=-0.117) :: Charge -> Bool;
  6. >=-0.087) :: Charge -> Bool; (>=0.013) :: Charge -> Bool; (>=0.142) :: Charge -> Bool;
  7. Bond -> Bool;
  8. Bond -> Bool;
  9. Bond -> Bool;
  10. Bond -> Bool;
  11. Int -> Bool;
  12. Int -> Bool;
  13. Int -> Bool; projElement :: Atom -> Element; projAtomType :: Atom -> AtomType; projCharge :: Atom -> Charge;
  14. H. Blockeel and L. De Raedt. Top-down induction of logical decision trees. Available at 1997.
  15. H. Blockeel and L. De Raedt. Top-down induction of first-order logical decision trees. Artificial Intelligence, 101:285-297, 1998.
  16. L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. Classification and Regression Trees. Chapman and Hall, 1984.
  17. A.F. Bowers, C. Giraud-Carrier, and J.W. Lloyd. Classification of individuals with complex structure. In P. Langley, editor, Machine Learning: Proceedings of the Seven- teenth International Conference (ICML2000), pages 81-88. Morgan Kaufmann, 2000.
  18. M. Bongard. Pattern Recognition. Spartan Books, 1970.
  19. W.W. Cohen and H. Hirsh. Learning the CLASSIC description logic: Theoretical and experimental results. In Proceedings of the Fourth International Conference on Princi- ples of Knowledge Representation and Reasoning, pages 121-133. Morgan Kaufmann, 1994.
  20. A. Church. A formulation of the simple theory of types. Journal of Symbolic Logic, 5:56-68, 1940.
  21. W.W. Cohen. Rapid prototyping of ILP systems using explicit bias. In Proceedings of the IJCAI'93 Workshop on Inductive Logic Porgramming,
  22. W.W. Cohen. Learning trees and rules with set-valued features. In Proceedings of the Thirteenth National Conference on Artificial Intelligence, pages 709-716, Menlo Park, CA, 1996. AAAI Press.
  23. S. Džeroski, L. De Raedt, and H. Blockeel. Relational reinforcement learning. In Proceedings of the 15th International Conference on Machine Learning, ICML'98, pages 136-143. Morgan Kaufmann, 1998.
  24. S. Džeroski and P. Flach, editors. Proceedings of the International Workshop on Inductive Logic Programming, ILP'99, Lecture Notes in Artificial Intelligence, 1634. Springer-Verlag, 1999.
  25. T.G. Dietterich, R.H. Lathrop, and T. Lozano-Pérez. Solving the multiple instance problem with axis-parallel rectangles. Artificial Intelligence, 89:31-71, 1997.
  26. P. Flach, C. Giraud-Carrier, and J.W. Lloyd. Strongly typed inductive concept learn- ing. In Proceedings of the International Conference on Inductive Logic Programming, ILP'98, pages 185-194, 1998.
  27. P. Finn, S. Muggleton, D. Page, and A. Srinivasan. Pharmacophore discovery using inductive logic programming system PROGOL. Machine Learning, 30:241-270, 1998.
  28. L. Henkin. Completeness in the theory of types. Journal of Symbolic Logic, 15(2):81-91, 1950.
  29. Home page of ILP workshops. http://www.cs.york.ac.uk/ILP-events/.
  30. ILPb] Home page of ILPNET.
  31. C.J. Kennedy and C. Giraud-Carrier. An evolutionary approach to concept learn- ing with structured data. In Proceedings of the Fourth International Conference on Artificial Neural Networks and Genetic Algorithms (ICANNGA'99), pages 331-366. Springer-Verlag, 1999.
  32. C.J. Kennedy and C. Giraud-Carrier. Predicting chemical carcinogenesis using struc- tural information only. In Proceedings of the Third European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDDD'99), pages 360-365, 1999.
  33. R. King, S. Muggleton, S. Srinivasan, and M. Sternberg. Structure-activity relation- ships derived by machine learning: The use of atoms and their bond connectivities to predict mutagenicity in inductive logic programming. Proceedings of the National Academy of Sciences, 93:438-442, 1996.
  34. J.-U. Kietz and S. Wrobel. Controlling the complexity of learning in logic through syn- tactic and task-oriented models. In S. Muggleton, editor, Inductive Logic Programming, chapter 16, pages 335-359. Academic Press, 1992.
  35. J.W. Lloyd. Programming in an integrated functional and logic language. Journal of Functional and Logic Programming, 1999(3), March 1999.
  36. J.W. Lloyd. Knowledge representation, computation, and learning in higher-order logic. In preparation, 2000.
  37. J.W. Lloyd. Programming with abstractions. In preparation, 2000.
  38. S. Muggleton and L. De Raedt. Inductive logic programming: Theory and methods. Journal of Logic Programming, 19/20:629-679, 1994.
  39. R.S. Michalski. A theory and methodology of inductive learning. Artificial Intelligence, 20:111-116, 1983.
  40. T.M. Mitchell. Generalization as search. Artificial Intelligence, 18:203-226, 1982.
  41. T.M. Mitchell. Machine Learning. McGraw-Hill, 1997.
  42. R.S. Michalski and J.B. Larson. Inductive inference of VL decision rules. In Workshop on Pattern-directed Inference Systems, pages 34-44, 1977.
  43. O. Maron and T. Lozano-Pérez. A framework for multiple-instance learning. In M. Jor- dan, M. Kearns, and S. Solla, editors, in Neural Information Processing Sys- tems 10: Proceedings of the 1997 Conference, pages 570-576, Cambridge, MA, 1998. MIT Press.
  44. S. Muggleton and C.D. Page. Beyond first-order learning: Inductive learning with higher order logic. Technical Report PRG-TR-13-94, Oxford University Computing Laboratory, 1994.
  45. S. Muggleton. Inverse entailment and Progol. New Generation Computing, 13:245-286, 1995.
  46. F. Neri and L. Saitta. Knowledge representation in machine learning. In F. Bergadano and L. De Raedt, editors, Proceedings of the European Conference on Machine Learn- ing, pages 20-27. Springer-Verlag, LNAI 784, 1994.
  47. G.D. Plotkin. A note on inductive generalisation. In B. Meltzer and D. Michie, editors, Machine Intelligence, volume 5, pages 153-163, 1969.
  48. J.R. Quinlan. Induction of decision trees. Machine Learning, 1:81-106, 1986. J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.
  49. J.R. Quinlan. Learning first-order definitions of functions. Journal of Artificial Intel- ligence Research, 5:139-161, 1996.
  50. C. Sammut. Learning Concepts by Performing Experiments. PhD thesis, University of South Wales, Australia, 1981.
  51. B. Schölkopf, C. Burges, and A. Smola. Advances in Kernel Methods: Support Vector Learning. MIT press, 1998.
  52. E. Y. Shapiro. Algorithmic Program Debugging. MIT Press, 1983.
  53. A. Srinivasan, R.D. King, and S.H. Muggleton. The role of background knowledge: us- ing a problem from chemistry to examine the performance of an ILP program. Available at http://www.comlab.ox.ac.uk/oucl/groups/machlearn/, 1999.
  54. A. Srinivasan, S. Muggleton, R. King, and M. Sternberg. Mutagenesis: ILP experiments in a non-determinate biological domain. In S. Wrobel, editor, Proceedings of Fourth Inductive Logic Programming Workshop. Gesellschaft für Mathematik und Datenver- arbeitung MBH, 1994. GMD-Studien Nr 237.