Induction and decision procedures
2004, Revista de la Real Academia de Ciencias Exactas, …
Abstract
Mechanization of inductive reasoning is an exciting research area in artificial intelligence and automated reasoning with many challenges. An overview of our work on mechanizing inductive reasoning based on the cover set method for generating induction schemes from terminating recursive function definitions and using decision procedures is presented. This paper particularly focuses on the recent work on integrating induction into decision procedures without compromising their automation. Resumen. Dentro del campo de la inteligencia artificial y del razonamiento automático, la mecanización del razonamiento inductivo es un área de investigación apasionante que se enfrenta a muchos retos. Se presenta una visión global del trabajo de los autores sobre la mecanización del razonamiento inductivo basado en el método de recubrimiento de conjuntos para la generación de esquemas de inducción a partir de definiciones de funciones recursivas con terminación que usa procedimientos de decisión. Este artículo se centra sobre todo en el trabajo reciente que se ha realizado con respecto a la integración de la inducción en los procedimientos de decisión sin comprometer su automatización.
References (29)
- Autexier, S., Hutter, D., Mantel, H., & Schairer, A. (1999) Inka 5.0 -A Logical Voyager. Proc. CADE-16, LNAI 1632.
- Baader, F. & Nipkow, T. (1998) Term Rewriting and All That. Cambridge University Press.
- Bouhoula, A. & Rusinowitch, M. Implicit Induction in Conditional Theories. Journal of Automated Reasoning, 14:189-235.
- Boyer, R. S. & Moore, J S. (1979) A Computational Logic, Academic Press.
- Boyer, R. S. & Moore, J S. (1988) A Computational Logic Handbook. Academic Press.
- Boyer, R. S. & Moore, J S. (1988) Integrating Decision Procedures Into Heuristic Theorem Provers: A Case Study of Linear Arithmetic. Machine Intelligence, 11:83-157.
- Bundy, A., Stevens, A., van Harmelen, F., Ireland, A. & Smaill, A. (1993) Rippling: A Heuristic for Guiding Inductive Proofs. Artificial Intelligence, 62:185-253.
- Dershowitz, N. (1987) Termination of Rewriting. Journal of Symbolic Computation, 3:69-116.
- Enderton, H. B. (1994) A Mathematical Introduction to Logic. 2nd edition, Harcourt/Academic Press.
- Franova, M. & Kodratoff, Y. (1992) Predicate Synthesis from Formal Specifications, Proc. ECAI 92.
- Giesl, J. & Kapur, D. (2001) Decidable Classes of Inductive Theorems. Proc. IJCAR '01, LNAI 2083, pp. 469- 484.
- Giesl, J. & Kapur, D. (2003) Deciding Inductive Validity of Equations. Proc. CADE'03, LNAI 2741, pp. 17-31. An expanded version is Technical Report AIB-2003-03, 2003. Available from http://aib.informatik. rwth-aachen.de
- Kapur, D. (1994) An Automated Tool for Analyzing Completeness of Equational Specifications. Proc. of Inter- national Symposium on Software Testing and Analysis (ISSTA), pp. 28-43.
- Kapur, D. (2001) Rewriting, Induction and Decision Procedures: A Case Study of Presburger Arithmetic. Symbolic-Algebraic Methods and Verification Methods -Theory and Applications, (eds. Alefeld, Rohn, Rump, and Yamamato), Springer Mathematics, Wien-NY, pp. 129-144.
- Kapur, D., Narendran, P., Rosenkrantz, D. & Zhang, H. (1991) Sufficient-Completeness, Quasi-Reducibility and Their Complexity. Acta Informatica, 28:311-350.
- Kapur, D. & Nie, X. (1994) Reasoning About Numbers in Tecton. Proc. 8th International Symposium on Method- ologies for Intelligent Systems, (ISMIS'94), pp. 57-70.
- Kapur, D. & Subramaniam, M. (1996) New Uses of Linear Arithmetic in Automated Theorem Proving by Induc- tion. Journal of Automated Reasoning, 16:39-78.
- Kapur, D. & Subramaniam, M. (1996) Mechanically Verifying a Family of Multiplier Circuits. Proc. Computer Aided Verification (CAV), LNCS 1102, pp. 135-146.
- Kapur, D. & Subramaniam, M. (1997) Mechanizing Verification of Arithmetic Circuits: SRT Division. Proc. FSTTCS-17, LNCS 1346, pp. 103-122.
- Kapur, D. & Subramaniam, M. (1998) Mechanical Verification of Adder Circuits using Powerlists. Journal of Formal Methods in System Design, 13(2):127-158.
- Kapur, D. & Subramaniam, M. (2000) Using an Induction Prover for Verifying Arithmetic Circuits. International Journal of Software Tools for Technology Transfer, 3(1):32-65.
- Kapur, D. & Subramaniam, M. (2000) Extending Decision Procedures with Induction Schemes. Proc. CADE-17, LNAI 1831, pp. 324-345.
- Kapur, D. & Subramaniam, M. (2003) Automatic Generation of Simple Lemmas from Recursive Definitions Using Decision Procedures-Preliminary Report. Proc. ASIAN 2003, LNCS.
- Kapur, D. & Zhang, H. (1995) An Overview of Rewrite Rule Laboratory (RRL). Journal of Computer and Math- ematics with Applications, 29:91-114.
- Kaufmann, M., Manolios, P. & Moore, J S. (2000) Computer-Aided Reasoning: An Approach. Kluwer.
- Protzen, M. (1996) Patching Faulty Conjectures, Proc. CADE-13, LNAI 1104.
- Subramaniam, M. (1997) Failure Analyses in Inductive Theorem Provers. Ph.D. Thesis, Department of Computer Science, University of Albany, New York.
- Zhang, H, Kapur, D. & Krishnamoorthy, M. S. (1988) A Mechanizable Induction Principle for Equational Speci- fications. Proc. CADE-9, LNCS 310.
- Zhang, H. (1988). Reduction, Superposition and Induction: Automated Reasoning in an Equational Logic. Ph.D. Thesis, Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY.